Influence of preheating temperature on splat morphology of spray deposited yttria-stabilized zirconia and lanthanum magnesium hexaaluminate in thermal barrier coatings

  • Mohammad Mehdi Khorramirad 1
  • Mohammad Reza Rahimipour 2
  • Mohammad Mehdi Hadavi 3
  • Kourosh Shirvani 4
  • 1 Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
  • 2 Ceramic Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 3 Department of Materials Engineering, Tarbiat Modares University, Tehran, Iran
  • 4 Department of Advanced Materials and New Energies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran

Abstract

The performance of thermal barrier coatings (TBCs) depends upon the morphology of individual splats and how a single particle flattens. A splat is a single unit cell of thermal barrier coatings. Its properties significantly influence the overall performance of the coating. The transition temperature of the substrate affects the splat morphology and influences the adhesion strength of the applied coating. This study investigates the effect of substrate preheating temperature on splat morphology and the critical transition temperature for yttria-stabilized zirconia (8YSZ) and lanthanum magnesium hexaaluminate (LaMgAl11O19, LaMA) powders deposited via atmospheric plasma spray (APS). Using scanning electron microscopy (SEM), a critical transition temperature of 400 °C was identified for both materials. Disc-shaped splats with improved adhesion formed at this temperature, while irregular shapes were observed below 400 °C, and disordered morphologies appeared above it. Notably, at 400 °C, 8YSZ splats exhibited surface cracks, whereas LaMA splats remained crack-free, highlighting differences in their thermo-mechanical properties. These findings emphasize the importance of optimizing preheating temperature to achieve desirable splat morphology and enhance TBC performance.

Downloads

Download data is not yet available.
Keywords: Thermal barrier coating, Splat, Transition temperature, Yttria-stabilized zirconia, Lanthanum magnesium hexaaluminate, Preheating

References

[1] K. Yang, M. Liu, K. Zhou, C. Deng, Recent Developments in the Research of Splat Formation Process in Thermal Spraying, J. Mater. 2013 (2013) 1–14. https://doi.org/10.1155/2013/260758.
[2] A.H. Pakseresht, Microstructural Investigation of BaTiO3 Plasma Sprayed Coating Deposited by Splash and Disk-Like Splats, J. Environ. Friendly Mater. 2 (2018) 1–6.
[3] A.H. Pakseresht, M.R. Rahimipour, M.R. Vaezi, M. Salehi, Effect of splat morphology on the microstructure and dielectric properties of plasma sprayed barium titanate films, Appl. Surf. Sci. 324 (2015) 797–806. https://doi.org/10.1016/j.apsusc.2014.11.041.
[4] J. Mostaghimi, S. Chandra, Splat formation in plasma-spray coating process, Pure Appl. Chem. 74 (2002) 441–445. https://doi.org/10.1351/pac200274030441.
[5] S. Chandra, P. Fauchais, Formation of solid splats during thermal spray deposition, J. Therm. Spray Technol. 18 (2009) 148–180. https://doi.org/10.1007/s11666-009-9294-5.
[6] X.Q. Cao, R. Vassen, D. Stoever, Ceramic materials for thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 1–10. https://doi.org/10.1016/S0955-2219(03)00129-8.
[7] Z. Hong-song, C. Xiao-ge, L. Gang, W. Xin-Li, D. Xu-dan, Influence of Gd2O3addition on thermophysical properties of La2Ce2O7ceramics for thermal barrier coatings, J. Eur. Ceram. Soc. 32 (2012) 3693–3700. https://doi.org/10.1016/j.jeurceramsoc.2012.06.003.
[8] C. Friedrich, R. Gadow, T. Schirmer, Lanthanum Hexaaluminate — a New Material for Atmospheric Plasma Spraying of Advanced Thermal Barrier Coatings, J. Therm. Spray Technol. 10 (2001) 592–598. https://doi.org/10.1361/105996301770349105.
[9] R. Vassen, A. Stuke, D. Stöver, Recent developments in the field of thermal barrier coatings, J. Therm. Spray Technol. 18 (2009) 181–186. https://doi.org/10.1007/s11666-009-9312-7.
[10] X. Chen, Y. Zhao, W. Huang, H. Ma, B. Zou, et al., Thermal aging behavior of plasma sprayed LaMgAl11O19thermal barrier coating, J. Eur. Ceram. Soc. 31 (2011) 2285–2294. https://doi.org/10.1016/j.jeurceramsoc.2011.05.036.
[11] R. Gadow, G. Schaefer, Thermal insulating material and method of producing same, US 6,998,064 B2. (2006). https://www.google.com/patents/US6998064.
[12] X. Chen, Y. Sun, J. Hu, J. Li, C. Deng, et al., Thermal cycling failure of the multilayer thermal barrier coatings based on LaMgAl11O19/YSZ, J. Eur. Ceram. Soc. 40 (2019) 0–1. https://doi.org/10.1016/j.jeurceramsoc.2019.12.039.
[13] X. Chen, Y. Zhao, X. Fan, Y. Liu, B. Zou, et al., Thermal cycling failure of new LaMgAl11O19/YSZ double ceramic top coat thermal barrier coating systems, Surf. Coat. Technol. 205 (2011) 3293–3300. https://doi.org/10.1016/j.surfcoat.2010.11.059.
[14] M.M. Khorramirad, M.R. Rahimipour, S.M.M. Hadavi, K. Shirvani, High temperature oxidation behavior of Inc-738/NiCrAlY/LaMA thermal barrier coating system, Surf. Coat. Technol. 364 (2019) 70–80. https://doi.org/10.1016/j.surfcoat.2019.02.017.
[15] M.M. Khorramirad, M.R. Rahimipour, S.M.M. Hadavi, K. Shirvani, Preoxidation of bond coat in IN-738LC/NiCrAlY/LaMgAl11O19 thermal barrier coating system, Ceram. Int. 44 (2018) 22080–22091. https://doi.org/10.1016/j.ceramint.2018.08.318.
[16] M.M. Khorramirad, M.R. Rahimipour, S.M.M. Hadavi, K.S. Jozdani, The effect of magnesium compounds (MgO and MgAl2O4) on the synthesis of Lanthanum magnesium hexaaluminate (LaMgAl11O19) by solid-state reaction method, Ceram. Int. 44 (2018) 4734–4739. https://doi.org/10.1016/j.ceramint.2017.12.056.
[17] M.M. Khorramirad, M.R. Rahimipour, S.M.M. Hadavi, K. Shirvani Jozdani, Synthesis of the lanthanum magnesium hexaaluminate (LaMgAl11O19) powder in order to plasma spray coating on the nickel super alloy as a thermal barrier coating, New Process Mater. Eng. 12 (2018) 173–183.
[18] X. Chen, Y. Zhang, X. Zhong, Z. Xu, J. Zhang, et al., Thermal cycling behaviors of the plasma sprayed thermal barrier coatings of hexaluminates with magnetoplumbite structure, J. Eur. Ceram. Soc. 30 (2010) 1649–1657. https://doi.org/10.1016/j.jeurceramsoc.2010.01.013.
[19] M. Pasandideh-Fard, V. Pershin, S. Chandra, J. Mostaghimi, Splat shapes in a thermal spray coating process: Simulations and experiments, J. Therm. Spray Technol. 11 (2002) 206–217. https://doi.org/10.1361/105996302770348862.
[20] W. Zhang, Integration of Process Diagnostics and Three Dimensional Simulations in Thermal Spraying, Doctor of Philosophy, Stony Brook University. (2008).

Cited By

Crossref Google Scholar
Influence of preheating temperature on splat morphology of spray deposited yttria-stabilized zirconia and lanthanum magnesium hexaaluminate in thermal barrier coatings
Submitted
2024-11-15
Available online
2025-03-06
How to Cite
Khorramirad, M. M., Rahimipour, M. R., Hadavi, M. M., & Shirvani, K. (2025). Influence of preheating temperature on splat morphology of spray deposited yttria-stabilized zirconia and lanthanum magnesium hexaaluminate in thermal barrier coatings. Synthesis and Sintering, 5(1), 52-59. https://doi.org/10.53063/synsint.2025.51262