High-temperature spark plasma sintering of h-BN composites reinforced with carbon nanotubes, carbon fibers, and graphene nanoplates

  • Hossein Eslami-Shahed 1
  • Khanali Nekouee 1
  • Farhad Moravvej-Farshi 1
  • Fatemeh Dabir 2
  • 1 Faculty of Materials and Manufacturing Technologies, Malek Ashtar University of Technology, Tehran, 1491912354, Iran
  • 2 Non-Metallic Materials Research Group, Niroo Research Institute (NRI), Tehran, 14686-13113, Iran

Abstract

In this study, two h-BN-based composites reinforced with carbon fibers (CF) and carbon fibers/carbon nanotubes (CNTs)/graphene nanoplates (GNPs) have been produced successfully through a high-temperature spark plasma sintering. 1 Wt.% short carbon fibers (length of 5 mm) with 0.1 Wt.% of CNTs and also 0.1 Wt.% of GNPs as hybrid composite were mixed through a simple mixing method including a high energy sonicating and stirring on the hot plate in ethanol media until drying. Moreover, h-BN/1 Wt. % CF composite was mixed with a similar method to compare impacts of CNTs and GNPs addition on the mechanical properties and microstructure of h-BN/CF composite. The high-temperature spark plasma sintering processes were performed at vacuum conditions of almost 20-25 MPa with a starting pressure of 10 and a final applied pressure of 50 MPa at a maximum temperature of 1900˚C. Both prepared samples showed near full densification of higher than 98.1 % of the theoretical density determined by Archimedes’ principle. Investigation of the crystalline phases by XRD represented only related peaks to h-BN. The FESEM images indicated an almost uniform distribution of reinforcement in the h-BN matrix. Furthermore, the polished surface of the provided samples showed only the pulled-out carbon fibers effects while the fracture surfaces confirmed the presence of CF and it’s tunneling effects. The obtained mechanical properties revealed 273±12 MPa of bending strength, 1.32±0.1 GPa of Vickers hardness, and 4.79±0.2 MPa.m0.5 fracture toughness for the prepared hybrid composite.

Downloads

Download data is not yet available.
Keywords: Hexagonal boron nitride, CNTs, Carbon fiber, GNPs, Spark plasma sintering

References

[1] D. Cai, Z. Yang, X. Duan, P. He, S. Wang, et al., Inhibiting crystallization mechanism of h-BN on α-cordierite in BN-MAS composites, J. Eur. Ceram. Soc. 36 (2016) 905–909. https://doi.org/10.1016/j.jeurceramsoc.2015.10.007.
[2] M. Hubácek, M. Ueki, Effect of the Orientation of Boron Nitride Grains on the Physical Properties of Hot‐Pressed Ceramics, J. Am. Ceram. Soc. 82 (1999) 156–160. https://doi.org/10.1111/j.1151-2916.1999.tb01735.x.
[3] H. Eslami-shahed, N. Ehsani, The effects of adding CNTs and GNPs on the microstructure and mechanical properties of hexagonal-boron nitride, Ceram. Int. 46 (2020) 22005–22014. https://doi.org/10.1016/j.ceramint.2020.05.176.
[4] J. Men, B. Li, J. Li, G. Li, J. Chen, X. Hou, Amorphous liquid phase induced synthesis of boron nitride nanospheres for improving sintering property of h-BN/ZrO2 composites, Ceram. Int. 46 (2020) 8031–8038. https://doi.org/10.1016/j.ceramint.2019.12.027.
[5] J. Eichler, C. Lesniak, Boron nitride (BN) and BN composites for high-temperature applications, J. Eur. Ceram. Soc. 28 (2008) 1105–1109. https://doi.org/10.1016/j.jeurceramsoc.2007.09.005.
[6] C. Steinborn, M. Herrmann, U. Keitel, A. Schönecker, J. Räthel, et al., Correlation between microstructure and electrical resistivity of hexagonal boron nitride ceramics, J. Eur. Ceram. Soc. 33 (2013) 1225–1235. https://doi.org/10.1016/j.jeurceramsoc.2012.11.024.
[7] D. Cai, Z. Yang, X. Duan, B. Liang, Q. Li, et al., A novel BN–MAS system composite ceramics with greatly improved mechanical properties prepared by low temperature hot-pressing, Mater. Sci. Eng: A. 633 (2015) 194–199. https://doi.org/10.1016/j.msea.2015.03.030.
[8] D. Wei, Q. Meng, D. Jia, Microstructure of hot-pressed h-BN/Si3N4 ceramic composites with Y2O3–Al2O3 sintering additive, Ceram. Int. 33 (2007) 221–226. https://doi.org/10.1016/j.ceramint.2005.09.004.
[9] H. Qin, Y. Liang, J. Huang, Size and temperature effect on the mechanical properties of graphene/hexagonal boron nitride van der Waals heterostructure, Mater. Sci. Eng: B. 265 (2021) 115006. https://doi.org/10.1016/j.mseb.2020.115006.
[10] A.P. Barboza, A.C. Souza, M.J. Matos, J.C. Brant, T.C. Barbosa, et al., Graphene/h-BN heterostructures under pressure: From van der Waals to covalent, Carbon. 155 (2019) 108–113. https://doi.org/10.1016/j.carbon.2019.08.054.
[11] A. Acharya, S. Sharma, X. Liu, D. Zhang, Y.K. Yap, A Review on van der Waals Boron Nitride Quantum Dots, C. 7 (2021) 35. https://doi.org/10.3390/c7020035.
[12] X. Duan, M. Wang, D. Jia, N. Jing, Z. Wu, et al., Anisotropic mechanical properties and fracture mechanisms of textured h-BN composite ceramics, Mater. Sci. Eng: A. 607 (2014) 38–43. https://doi.org/10.1016/j.msea.2014.03.132.
[13] X. Duan, D. Jia, Z. Wu, Z. Tian, Z. Yang, et al., Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics, Scr. Mater. 68 (2013) 104–107. https://doi.org/10.1016/j.scriptamat.2012.09.012.
[14] Y. Zhao, Y. Zhang, H. Gong, X. Wang, H. Sun, Effects of Y2O3–MgO nanopowders content on mechanical and dielectric properties of porous BN/Si3N4 composites, Ceram. Int. 41 (2015) 3618–3623. https://doi.org/10.1016/j.ceramint.2014.11.025.
[15] M.I. Litter, A. Ahmad, Industrial Applications of Nanoparticles A Prospective Overview, CRC Press: Boca Raton, FL, USA. (2023). https://doi.org/10.1201/9781003183525.
[16] D. Jia, L. Zhou, Z. Yang, X. Duan, Y. Zhou, Effect of preforming process and starting fused SiO2 particle size on microstructure and mechanical properties of pressurelessly sintered BNp/SiO2 ceramic composites, J. Am. Ceram. Soc. 94 (2011) 3552–3560. https://doi.org/10.1111/j.1551-2916.2011.04540.x.
[17] B. Niu, D. Cai, Z. Yang, X. Duan, W. Duan, et al., Effects of sintering temperature on the microstructure and properties of h-BN ceramics with MAS as liquid sintering aid, Ceram. Int. 46 (2020) 1076–1082. https://doi.org/10.1016/j.ceramint.2019.09.074.
[18] Z. Zhang, X. Duan, B. Qiu, Z. Yang, D. Cai, et al., Anisotropic properties of textured h-BN matrix ceramics prepared using 3Y2O3-5Al2O3 (-4MgO) as sintering additives, J. Eur. Ceram. Soc. 39 (2019) 1788–1795. https://doi.org/10.1016/j.jeurceramsoc.2019.01.003.
[19] Z. Zhang, L. Teng, W. Li, Mechanical properties and microstructures of hot-pressed MgAlON–BN composites, J. Eur. Ceram. Soc. 27 (2007) 319–326. https://doi.org/10.1016/j.jeurceramsoc.2006.04.184.
[20] T. Hagio, H. Yoshida, Sintering and crystallization of ground hexagonal boron nitride powders, J. Mater. Sci. Let. 13 (1994) 653–655. https://doi.org/10.1007/BF00271224.
[21] X.J. Gao, D.M. Yan, J.W. Cao, C. Zhang, X.M. Mu, et al., The study on the property and the microstructure of pressureless sintered h-BN ceramics, Adv. Mater. Res. 1104 (2015) 9–14. https://doi.org/10.4028/www.scientific.net/AMR.1104.9.
[22] H. Yang, H. Fang, H. Yu, Y. Chen, L. Wang, et al., Low temperature self-densification of high strength bulk hexagonal boron nitride, Nat. Commun. 10 (2019) 854. https://doi.org/10.1038/s41467-019-08580-9.
[23] E. Ghasali, M. Alizadeh, A.H. Pakseresht, T. Ebadzadeh, Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering, J. Asian Ceram. Soc. 5 (2017) 472–478. https://doi.org/10.1016/j.jascer.2017.10.004.
[24] E. Ghasali, K. Shirvanimoghaddam, M. Alizadeh, T. Ebadzadeh, Ultra-low temperature fabrication of vanadium carbide reinforced aluminum nano composite through spark plasma sintering, J. Alloys Compd. 753 (2018) 433–445. https://doi.org/10.1016/j.jallcom.2018.04.239.
[25] E. Ghasali, Y. Palizdar, A. Jam, H. Rajaei, T. Ebadzadeh, Effect of Al and Mo addition on phase formation, mechanical and microstructure properties of spark plasma sintered iron alloy, Mater. Today Commun. 13 (2017) 221–231. https://doi.org/10.1016/j.mtcomm.2017.10.005.
[26] E. Ghasali, Y. Orooji, A. Faeghi-nia, M. Alizadeh, T. Ebadzadeh, Characterization of mullite-Nd2O3 composite prepared through spark plasma sintering, Ceram. Int. 47 (2021) 16200–16207. https://doi.org/10.1016/j.ceramint.2021.02.198.
[27] M. Vukšić, I. Žmak, L. Ćurković, A. Kocjan, Spark plasma sintering of dense alumina ceramics from industrial waste scraps, Open Ceram. 5 (2021) 100076. https://doi.org/10.1016/j.oceram.2021.100076.
[28] U.C. Oliver, A.V. Sunday, E.I.-E.I. Christain, M.M. Elizabeth, Spark plasma sintering of aluminium composites—a review, Int. J. Adv. Manuf. Technol. 112 (2021) 1819–1839. https://doi.org/10.1007/s00170-020-06480-7.
[29] Z.-Y. Hu, Z.-H. Zhang, X.-W. Cheng, F.-C. Wang, Y.-F. Zhang, S.-L. Li, A review of multi-physical fields induced phenomena and effects in spark plasma sintering: Fundamentals and applications, Mater. Design. 191 (2020) 108662. https://doi.org/10.1016/j.matdes.2020.108662.
[30] Z. Yılmaz, N. Ay, The investigation of synthesis and textured properties of in situ formed hBN with spark plasma sintering, Mater. Chem. Phys. 316 (2024) 129043. https://doi.org/10.1016/j.matchemphys.2024.129043.
[31] R. Chaim, Densification mechanisms in spark plasma sintering of nanocrystalline ceramics, Mater. Sci. Eng: A. 443 (2007) 25–32. https://doi.org/10.1016/j.msea.2006.07.092.
[32] O.J. Akinribide, B.A. Obadele, O.O. Ayeleru, S. Akinwamide, K. Nomoto, et al., The role of graphite addition on spark plasma sintered titanium nitride, J. Mater. Res. Technol. 9 (2020) 6268–6277. https://doi.org/10.1016/j.jmrt.2020.03.040.
[33] O. Ogunbiyi, T. Jamiru, E. Sadiku, O. Adesina, L. Beneke, T.A. Adegbola, Spark plasma sintering of nickel and nickel based alloys: A Review, Procedia Manuf. 35 (2019) 1324–1329. https://doi.org/10.1016/j.promfg.2019.05.022.
[34] E. Ghasali, T. Ebadzadeh, M. Alizadeh, M. Razavi, Unexpected SiC nanowires growth during spark plasma sintering of WC-10Si: a comparative study on phase formation and microstructure properties against WC-10Co cermet, J. Alloys Compd. 786 (2019) 938–952. https://doi.org/10.1016/j.jallcom.2019.02.059.
[35] H. Wang, Y. Zeng, Y. Dai, Y. Li, T. Zhu, Z. Fu, Enhanced mechanical properties of boron carbide ceramics prepared by spark plasma sintering with boron nitride nanosheets addition, J. Eur. Ceram. Soc. 44 (2024) 116735. https://doi.org/10.1016/j.jeurceramsoc.2024.116735.
[36] F.R. Zhai, M. Lu, K. Shan, Z.Z. Yi, Z.P. Xie, Spark plasma sintering and characterization of mixed h-bn powders with different grain sizes, Solid State Phenom. 281 (2018) 414–419. https://doi.org/10.4028/www.scientific.net/SSP.281.414.
[37] T.F. Almeida, M.P. Gonçalves, R.H.G.A. Kiminami, Microstructure and dielectric properties of hexagonal boron nitride prepared by hot pressing (uniaxial and isostatic) and by spark plasma sintering, Adv. Appl. Ceram. 119 (2020) 41–48. https://doi.org/10.1080/17436753.2019.1689704.
[38] M. Ehsani, M. Zakeri, M. Razavi, The effect of temperature on the physical and mechanical properties of nanostructured boron nitride by spark plasma sintering, J. Alloys Compd. 835 (2020) 155317. https://doi.org/10.1016/j.jallcom.2020.155317.
[39] Y. Wu, Y. Zhang, X. Wang, W. Hu, S. Zhao, et al., Twisted-layer boron nitride ceramic with high deformability and strength, Nature. 626 (2024) 779–784. https://doi.org/10.1038/s41586-024-07036-5.
[40] Q. Guo, J. Wang, J. Pei, J. Li, L. Zhang, Effect of SiC Content on the Microstructure and Properties of Zr2Al4C5/SiC Composites in situ Fabricated by Spark Plasma Sintering, IOP Conference Series: Materials Science and Engineering, IOP Publishing. 678 (2019) 012073. https://doi.org/10.1088/1757-899X/678/1/012073.
[41] C. Xia, A.C. Garcia, S.Q. Shi, Y. Qiu, N. Warner, et al., Hybrid boron nitride-natural fiber composites for enhanced thermal conductivity, Sci. Rep. 6 (2016) 34726. https://doi.org/10.1038/srep34726.
[42] Y. Yuan, X. Cheng, R. Chang, T. Li, J. Zang, et al., Reactive sintering cBN-Ti-Al composites by spark plasma sintering, Diam. Relat. Mater. 69 (2016) 138–143. https://doi.org/10.1016/j.diamond.2016.08.009.
[43] B. Wang, Y. Qin, F. Jin, J.-F. Yang, K. Ishizaki, Pulse electric current sintering of cubic boron nitride/tungsten carbide–cobalt (cBN/WC–Co) composites: effect of cBN particle size and volume fraction on their microstructure and properties, Mater. Sci. Eng: A. 607 (2014) 490–497. https://doi.org/10.1016/j.msea.2014.04.029.
[44] Z. Su, H. Wang, X. Ye, K. Tian, W. Huang, et al., Enhanced thermal conductivity of functionalized-graphene/boron nitride flexible laminated composite adhesive via a facile latex approach, Compos. A: Appl. Sci. Manuf. 99 (2017) 166–175. https://doi.org/10.1016/j.compositesa.2017.03.033.
[45] O.-K. Park, P.S. Owuor, Y.M. Jaques, D.S. Galvao, N.H. Kim, et al., Hexagonal boron nitride-carbon nanotube hybrid network structure for enhanced thermal, mechanical and electrical properties of polyimide nanocomposites, Compos. Sci. Technol. 188 (2020) 107977. https://doi.org/10.1016/j.compscitech.2019.107977.
[46] W. Yan, Y. Zhang, H. Sun, S. Liu, Z. Chi, et al., Polyimide nanocomposites with boron nitride-coated multi-walled carbon nanotubes for enhanced thermal conductivity and electrical insulation, J. Mater. Chem. A. 2 (2014) 20958–20965. https://doi.org/10.1039/C4TA04663C.
[47] D.P. Kim, C.G. Gofer, J. Economy, Fabrication and properties of ceramic composites with a boron nitride matrix, J. Am. Ceram. Soc. 78 (1995) 1546–1552. https://doi.org/10.1111/j.1151-2916.1995.tb08850.x.
[48] M. Khalaj, S. Zarabi Golkhatmi, S.A.A. Alem, K. Baghchesaraee, M. Hasanzadeh Azar, S. Angizi, Recent progress in the study of thermal properties and tribological behaviors of hexagonal boron nitride-reinforced composites, J. Compos. Sci. 4 (2020) 116. https://doi.org/10.3390/jcs4030116.
[49] A.G. EVans, E.A. Charles, Fracture toughness determinations by indentation, J. Am. Ceram. Soc. 59 (1976) 371–372. https://doi.org/10.1111/j.1151-2916.1976.tb10991.x.

Cited By

Crossref Google Scholar
High-temperature spark plasma sintering of h-BN composites reinforced with carbon nanotubes, carbon fibers, and graphene nanoplates
Submitted
2024-11-07
Available online
2024-12-16
How to Cite
Eslami-Shahed, H., Nekouee, K., Moravvej-Farshi, F., & Dabir, F. (2024). High-temperature spark plasma sintering of h-BN composites reinforced with carbon nanotubes, carbon fibers, and graphene nanoplates. Synthesis and Sintering, 4(4), 282-291. https://doi.org/10.53063/synsint.2024.44261