Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route

  • Arezoo Jangjoo Tazeh Kand 1
  • Fereshteh Afaghi 1
  • Arvin Taghizadeh Tabrizi 2
  • Hossein Aghajani 2
  • Hilal Demir Kivrak 3
  • 1 Materials Engineering Department, University of Tabriz, Tabriz, Iran
  • 2 School of Metallurgy and Materials Engineering, Iran University of Science and Technology, Narmak, Tehran, Iran
  • 3 Department of Chemical Engineering, Faculty of Engineering and Architectural Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey


The hydroxyapatite layer was deposited on the commercial magnesium alloy of AZ91 by electrophoretic deposition route, and the corrosion behavior of applied layers was studied by polarization and electrochemical impedance spectroscopy at the Simulated Body Fluid (SBF) solution. The best corrosion resistance improvement was obtained for the sample synthesized at 40 V within 4 minutes. Also, the morphology of coated samples was studied by atomic force microscopy (AFM) and the surface parameters were measured. It could be concluded that the calculated values for surface parameters including surface roughness, maximum peak height, maximum pit depth, and maximum peak have a meaningful relationship with corrosion resistance.


Download data is not yet available.
Keywords: Hydroxyapatite layer, Magnesium alloy, Electrophoretic deposition, Electrochemical impedance spectroscopy, Synthesis


[1] M. Ding, N. Sahebgharani, F. Musharavati, F. Jaber, E. Zalnezhad, G.H. Yoon, Synthesis and properties of HA/ZnO/CNT nanocomposite, Ceram. Int. 44 (2018) 7746–7753. https://doi.org/10.1016/j.ceramint.2018.01.203.
[2] M. Ji, H. Li, H. Guo, A. Xie, S. Wang, et al., A novel porous aspirin-loaded (GO/CTS-HA)n nanocomposite films: Synthesis and multifunction for bone tissue engineering, Carbohydr. Polym. 153 (2016) 124–132. https://doi.org/10.1016/j.carbpol.2016.07.078.
[3] C. Prakash, S. Singh, K. Verma, S.S. Sidhu, S. Singh, Synthesis and characterization of Mg-Zn-Mn-HA composite by spark plasma sintering process for orthopedic applications, Vacuum. 155 (2018) 578–584. https://doi.org/10.1016/j.vacuum.2018.06.063.
[4] Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, W.I. Abdel-Fattah, Orthopaedic bioactive glass/chitosan composites coated 316L stainless steel by green electrophoretic co-deposition, Surf. Coat. Technol. 334 (2018) 479–490. https://doi.org/10.1016/j.surfcoat.2017.11.052.
[5] T. Moskalewicz, A. Lukaszczyk, A. Kurk, M. Kot, D. Jugowiec, et al., Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co-28Cr-5Mo alloy, Mater. Chem. Phys. 199 (2017) 144–158. https://doi.org/10.1016/j.matchemphys.2017.06.064.
[6] A. Bordbar Khiabani, S. Rahimi, B. Yarmand, M. Mozafari, Electrophoretic deposition of graphene oxide on plasma electrolytic oxidized-magnesium implants for bone tissue engineering applications, Mater. Today Proc. 5 (2018) 15603–15612. https://doi.org/10.1016/j.matpr.2018.04.169.
[7] S.A. Naziri Mehrabani, R. Ahmadzadeh, N. Abdian, A. Taghizadeh Tabrizi, H. Aghajani, Synthesis of Ni-GO nanocomposite coatings: Corrosion evaluation, Surf. Interfaces. 20 (2020) 100546. https://doi.org/10.1016/j.surfin.2020.100546.
[8] A. Pawlik, M.A.U. Rehman, Q. Nawaz, F.E. Bastan, G.D. Sulka, A.R. Boccaccini, Fabrication and characterization of electrophoretically deposited chitosan-hydroxyapatite composite coatings on anodic titanium dioxide layers, Electrochim. Acta. 307 (2019) 465–473. https://doi.org/10.1016/j.electacta.2019.03.195.
[9] S. Koesnarpadi, S.J. Santosa, D. Siswanta, B. Rusdiarso, Synthesis and Characterizatation of Magnetite Nanoparticle Coated Humic Acid (Fe3O4/HA), Procedia Environ. Sci. 30 (2015) 103–108. https://doi.org/10.1016/j.proenv.2015.10.018.
[10] S. Türk, I. Altınsoy, G.Ç. Efe, M. Ipek, M. Özacar, C. Bindal, Biomimetic synthesis of Ag, Zn or Co doped HA and coating of Ag, Zn or Co doped HA/fMWCNT composite on functionalized Ti, Mater. Sci. Eng. C. 99 (2019) 986–998. https://doi.org/10.1016/j.msec.2019.02.025.
[11] K.D. Patel, R.K. Singh, J.H. Lee, H.W. Kim, Electrophoretic coatings of hydroxyapatite with various nanocrystal shapes, Mater. Lett. 234 (2019) 148–154. https://doi.org/10.1016/j.matlet.2018.09.066.
[12] O.S. Yildirim, B. Aksakal, H. Celik, Y. Vangolu, A. Okur, An investigation of the effects of hydroxyapatite coatings on the fixation strength of cortical screws, Med. Eng. Phys. 27 (2005) 221–228. https://doi.org/10.1016/j.medengphy.2004.10.006.
[13] A. Clifford, X. Pang, I. Zhitomirsky, Biomimetically modified chitosan for electrophoretic deposition of composites, Colloids Surf. 544 (2018) 28–34. https://doi.org/10.1016/j.colsurfa.2018.02.028.
[14] D. Jugowiec, A. Lukaszcyzyk, L. Cieniek, K. Kowalski, L. Rumian, et al., Influence of the electrophoretic deposition route on the microstructure and properties of nano-hydroxyapatite/chitosan coatings on the Ti-13Nb-13Zr alloy, Surf. Coat. Technol. 324 (2017) 64–79. https://doi.org/10.1016/j.surfcoat.2017.05.056.
[15] M. Bartmanski, B. Cieslik, J. Glodowska, P. Kalka, L. Pawlowski, et al., Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy, Ceram. Int. 43 (2017) 11820–11829. https://doi.org/10.1016/j.ceramint.2017.06.026.
[16] F.E. Baştan, M. Atiq Ur Rehman, Y.Y. Avcu, E. Avcu, F. Üstel, A.R. Boccaccini, Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids Surf. B. 169 (2018) 176–182. https://doi.org/10.1016/j.colsurfb.2018.05.005.
[17] V. Khalili, J. Khalil-Allafi, C. Sengstock, Y. Motemani, A. Paulsen, et al., Characterization of mechanical properties of hydroxyapatite-silicon-multi walled carbon nano tubes composite coatings synthesized by EPD on NiTi alloys for biomedical application, J. Mech. Behav. Biomed. Mater. 59 (2016) 337–352, https://doi.org/10.1016/j.jmbbm.2016.02.007.
[18] S. Mahmoodi, L. Sorkhi, M. Farrokhi-Rad, T. Shahrabi, Electrophoretic deposition of hydroxyapatite-chitosan nanocomposite coatings in different alcohols, Surf. Coat. Technol. 216 (2013) 106–114. https://doi.org/10.1016/j.surfcoat.2012.11.032.
[19] M. Farrokhi-Rad, Electrophoretic deposition of hydroxyapatite fiber reinforced hydroxyapatite matrix nanocomposite coatings, Surf. Coat. Technol. 329 (2017) 155–162. https://doi.org/10.1016/j.surfcoat.2017.09.051.
[20] Q. Tayyaba, M. Shahzad, A.Q. Butt, Rafi-ud-din, M. Khan, A.H. Qureshi, The influence of electrophoretic deposition of HA on Mg-Zn-Zr alloy on its in-vitro degradation behaviour in the Ringer’s solution, Surf. Coat. Technol. 375 (2019) 197–204. https://doi.org/10.1016/j.surfcoat.2019.07.014.
[21] M. Razavi, M. Fathi, O. Savabi, D. Vashaee, L. Tayebi, In vivo assessments of bioabsorbable AZ91 magnesium implants coated with nanostructured fluoridated hydroxyapatite by MAO/EPD technique for biomedical applications, Mater. Sci. Eng. C. 48 (2015) 21–27. https://doi.org/10.1016/j.msec.2014.11.020.
[22] S. Singh, G. Singh, N. Bala, Corrosion behavior and characterization of HA/Fe3O4/CS composite coatings on AZ91 Mg alloy by electrophoretic deposition, Mater. Chem. Phys. 237 (2019) 121884. https://doi.org/10.1016/j.matchemphys.2019.121884.
[23] S. Khanmohammadi, M. Ojaghi-Ilkhchi, M. Farrokhi-Rad, Evalaution of Bioglass and Hyroxyapatite Based Nanocomposite Coatings Obtained by ELectrophoretic Deposition, Ceram. Int. 46 (2020) 26069–26077. https://doi.org/10.1016/j.ceramint.2020.07.100.
[24] E. Avcu, F.E. Baştan, H.Z. Abdullah, M.A.U. Rehman, Y.Y. Avcu, A.R. Boccaccini, Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review, Prog. Mater. Sci. 103 (2019) 69–108. https://doi.org/10.1016/j.pmatsci.2019.01.001.
[25] M. Goudarzi, F. Batmanghelich, A. Afshar, A. Dolati, G. Mortazavi, Development of electrophoretically deposited hydroxyapatite coatings on anodized nanotubular TiO2 structures: Corrosion and sintering temperature, Appl. Surf. Sci. 301 (2014) 250–257. https://doi.org/10.1016/j.apsusc.2014.02.055.
[26] H. Farnoush, G. Aldiç, H. Çimenoğlu, Functionally graded HA-TiO2 nanostructured composite coating on Ti-6Al-4V substrate via electrophoretic deposition, Surf. Coat. Technol. 265 (2015) 7–15. https://doi.org/10.1016/j.surfcoat.2015.01.069.

Cited By

Crossref Google Scholar
Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route
Available online
How to Cite
Jangjoo Tazeh Kand, A., Afaghi, F., Taghizadeh Tabrizi, A., Aghajani, H., & Demir Kivrak, H. (2021). Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route. Synthesis and Sintering, 1(2), 85-91. https://doi.org/10.53063/synsint.2021.1226