Synthesis and characterization of ZnS and Ag-ZnS nanoparticles for photocatalytic degradation of aqueous pollutants

  • Amir Hossein Afzali 1
  • Arshia Seddiqi 1
  • Zahra Akbari 1
  • Maryam Hajiebrahimi 1
  • Sanaz Alamdari 2
  • Omid Mirzaee 1
  • 1 Faculty of Materials and Metallurgical Engineering, Semnan University, Semnan, Iran
  • 2 Department of Nanotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, Iran

Abstract

Photocatalytic degradation has drawn much interest recently as a substitute technique for eliminating environmental contaminants from the aqueous phase. In this study, pure and Ag-doped zinc sulfide (ZnS) nanoparticles were synthesized for the photocatalytic degradation of methylene blue (MB) under UVA light irradiation using a simple chemical co-precipitation method. The nanopowders' structural, optical, morphological, and chemical properties were characterized using XRD, FTIR, UV-Vis, and FESEM techniques. XRD analysis confirmed the hexagonal crystal structure of the nanoparticles, while FTIR identified stretching vibrations corresponding to O–H, C–H, C=O, C–N, and Zn–S bonds. The UV-Vis analysis revealed an optical band gap in the range of 5.2–5.4 eV. Photocatalytic performance tests under UVA light demonstrated that Ag doping significantly enhanced the photocatalytic efficiency of ZnS nanoparticles in degrading MB. Upon exposure to UVA light, the synthesized Ag-ZnS nanoparticles achieved impressive decolorization efficiency within 25 minutes, compared to 35 minutes for pure ZnS. The findings indicate that Ag-ZnS is a highly promising photocatalyst for the efficient removal of aqueous pollutants, including methylene blue dye.

Downloads

Download data is not yet available.
Keywords: Zinc sulfide, Ag dopant, Co-precipitation, Nanoparticles, Photocatalytic activity

References

[1] K. Faith Ngulube, A. Abdelhaleem, M. Fujii, M. Nasr, Synergism of Artificial Intelligence and Techno-Economic for Sustainable Treatment of Methylene Blue Dye-Containing Wastewater by Photocatalysis, Sustainability. 16 (2024) 529. https://doi.org/10.3390/su16020529.
[2] A. Gangadhar, A. Mavinakere Ramesh, J. Krishnegowda, S. Shivanna; Photo-catalytic dye degradation of methylene blue by using ZrO2/MWCNT nanocomposites, Water Pract. Technol. 16 (2021) 1265–1276. https://doi.org/10.2166/wpt.2021.066.
[3] F.-F. Zhang, Y. Han, Q. Liang, M. Wu, X. Wang, et al., Visible light-assisted photocatalytic degradation of methylene blue in water by highly chemically stable Cd-coordination polymers at room temperature, New J. Chem. 45 (2021) 19660–19665. https://doi.org/10.1039/D1NJ03958J.
[4] A. Chakrabarti, E. Alessandri, Syntheses, Properties, and Applications of ZnS-Based Nanomaterials, Appl. Nano. 5 (2024) 116–142. https://doi.org/10.3390/applnano5030010.
[5] P. Sehrawat, S.K. Mehta, S.K. Kansal, Synergistic enhancement of photocatalytic activity in ZnS/P-doped-MoS2 composite for hydrogen generation simultaneously oxidation of benzyl alcohol through water splitting and dye degradation, Int. J. Hydrog. Energy. 80 (2024) 573–585. https://doi.org/10.1016/j.ijhydene.2024.07.147.
[6] Y. Wang, F. Xu, L. Sun, Y. Li, L. Liao, et al., A highly active Z-scheme SnS/Zn2SnO4 photocatalyst fabricated for methylene blue degradation, RSC Adv. 12 (2022) 31985–31995. https://doi.org/10.1039/D2RA05519H.
[7] D.G. Ayu, S. Gea, Andriayani, D. Junita Telaumbanua, A.F. Rahman Piliang, et al., Photocatalytic degradation of methylene blue using N-doped ZnO/carbon dot (N-ZnO/CD) nanocomposites derived from organic soybean, ACS Omega. 8 (2023) 14965–14984. https://doi.org/10.1021/acsomega.2c07546.
[8] H. Moon, S. Kim, S.W. Joo, M. Kim, N.K. Park, et al., Design and selective photocatalytic activity of highly concentrated C, N, O co-doped Zn, S co-defective ZnS particles mediated by ethylenediamine derivatives, Nano Today. 49 (2023) 101785. https://doi.org/10.1016/j.nantod.2023.101785.
[9] A. Oskenbay, D. Salikhov, O. Rofman, I. Rakhimbek, Z. Shalabayev, et al., Solid-state synthesis of ZnS/ZnO nanocomposites and their decoration with NiS cocatalyst for photocatalytic hydrogen production, Ceram. Int. 49 (2023) 32246–32260. https://doi.org/10.1016/j.ceramint.2023.07.200.
[10] L. Song, J. Hu, X. Lu, Z. Lu, J. Xie, et al., Boosting the photocatalytic activity and resistance of photostability of ZnS nanoparticles, Inorg. Chem. 61 (2022) 8217–8225. https://doi.org/10.1021/acs.inorgchem.2c00632.
[11] S. Alamdari, M. Haji Ebrahimi, O. Mirzaee, M. Jafar Tafreshi, M.H. Majlesara, et al., Cerium doped Tungsten-Based Compounds for Thermoluminescence Application, Prog. Phys. Appl. Mater. 2 (2022) 35–40. https://doi.org/10.22075/PPAM.2022.27086.1028.
[12] A. Balapure, J. Ray Dutta, R. Ganesan, Recent advances in semiconductor heterojunctions: a detailed review of the fundamentals of photocatalysis, charge transfer mechanism and materials, RSC Appl. Interfaces. 1 (2024) 43–69. https://doi.org/10.1039/D3LF00126A.
[13] B. Xiao, T. Lv, J. Zhao, Q. Rong, H. Zhang, et al., Synergistic effect of the surface vacancy defects for promoting photocatalytic stability and activity of ZnS nanoparticles, ACS Catal. 11 (2021) 13255–13265. https://doi.org/10.1021/acscatal.1c03476.
[14] L. Qin, S. Yang, D. Ding, J. Tan, J. Liu, R. Chen, Local-interaction-field-coupled semiconductor photocatalysis: recent progress and future challenges, J. Mater. Chem. A. 9 (2021) 2491–2525. https://doi.org/10.1039/D0TA09059J.
[15] N. Goodarzi, Z. Ashrafi-Peyman, E. Khani, A.Z. Moshfegh, Recent Progress on Semiconductor Heterogeneous Photocatalysts in Clean Energy Production and Environmental Remediation, Catalysts. 13 (2023) 1102. https://doi.org/10.3390/catal13071102.
[16] G.-J. Lee, J.J. Wu, Recent developments in ZnS photocatalysts from synthesis to photocatalytic applications—A review, Powder Technol. 318 (2017) 8–22. https://doi.org/10.1016/j.powtec.2017.05.022.
[17] M.M.H. Farahani, M. Hajiebrahimi, S. Alamdari, A. Najafzadehkhoee, G.M. Khounsaraki, et al., Synthesis and antibacterial activity of silver doped zinc sulfide/chitosan bionanocomposites: A new frontier in biomedical applications, Int. J. Biol. Macromol. 280 (2024) 135934. https://doi.org/10.1016/j.ijbiomac.2024.135934.
[18] Y. Yang, M. Toyoda, A. Yamaguchi, Y. Cho, A.N. El Aisnada, et al., Bandgap widening through doping for improving the photocatalytic oxidation ability of narrow-bandgap semiconductors, Phys. Chem. Chem. Phys. 25 (2023) 255–261. https://doi.org/10.1039/D2CP02994D.
[19] S. Patil, S. Jagadale, Co-precipitation methods for the synthesis of metal oxide nanostructures, Solution Methods for Metal Oxide Nanostructures, Elsevier. (2023) 39–60. https://doi.org/10.1016/B978-0-12-824353-4.00016-6.
[20] N. Kumari, S. Sareen, M. Verma, S. Sharma, A. Sharma, et al., Zirconia-based nanomaterials: recent developments in synthesis and applications, Nanoscale Adv. 4 (2022) 4210–4236. https://doi.org/10.1039/D2NA00367H.
[21] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges, Mater. Adv. 2 (2021) 1821–1871. https://doi.org/10.1039/D0MA00807A.
[22] A. Rajaeiyan, M.M. Bagheri-Mohagheghi, Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles, Adv. Manuf. 1 (2013) 176–182. https://doi.org/10.1007/s40436-013-0018-1.
[23] X. Liu, Q. Liu, C. Chen, Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic activity under visible light, Vacuum. 183 (2021) 109834. https://doi.org/10.1016/j.vacuum.2020.109834.
[24] D.V. Markovskaya, A.V. Zhurenok, S.V. Cherepanova, E.A. Kozlova, Solid solutions of CdS and ZnS: Comparing photocatalytic activity and photocurrent generation, Appl. Surf. Sci. Adv. 4 (2021) 100076. https://doi.org/10.1016/j.apsadv.2021.100076.
[25] B. Poornaprakash, H. Park, K. Subramanyam, S.P. Vattikuti, K.C. Devarayapalli, et al., Doping-induced photocatalytic activity and hydrogen evolution of ZnS: V nanoparticles, Ceram. Int. 47 (2021) 26438–26446. https://doi.org/10.1016/j.ceramint.2021.06.055.
[26] J. Luciano-Velázquez, Y. Xin, Y.F. Su, C.I. Quiles-Vélez, S.A. Cruz-Romero, et al., Synthesis, characterization, and photocatalytic activity of ZnS and Mn-doped ZnS nanostructures, MRS Adv. 6 (2021) 252–258. https://doi.org/10.1557/s43580-021-00035-y.
[27] N. Dixit, J.V. Vaghasia, S.S. Soni, M. Sarkar, M. Chavda, et al., Photocatalytic activity of Fe doped ZnS nanoparticles and carrier mediated ferromagnetism, J. Environ. Chem. Eng. 3 (2015) 1691–1701. https://doi.org/10.1016/j.jece.2015.06.010.
[28] M. Jothibas, C. Manoharan, S. Johnson Jeyakumar, P. Praveen, I. Kartharinal Punithavathy, J. Prince Richard, Synthesis and enhanced photocatalytic property of Ni doped ZnS nanoparticles, Sol. Energy. 159 (2018) 434–443. https://doi.org/10.1016/j.solener.2017.10.055.
[29] H.R. Rajabi, M. Farsi, Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization, J. Mol. Catal. A: Chem. 399 (2015) 53–61. https://doi.org/10.1016/j.molcata.2015.01.029.
[30] M. Hajiebrahimi, S. Alamdari, O. Mirzaee, M. Tajally, Luminescence Investigation of Ce Doped ZnO/CdWO4 Nanocomposite, Adv. Ceram. Prog. 8 (2022) 8–12. https://doi.org/10.30501/acp.2022.363264.1102.
[31] X.M. Shuai, W.Z. Shen, A facile chemical conversion synthesis of ZnO/ZnS core/shell nanorods and diverse metal sulfide nanotubes, J. Phys. Chem. C. 115 (2011) 6415–6422. https://doi.org/10.1021/jp2005716.
[32] L. Li, T.J. Daou, I. Texier, T.T. Kim Chi, N.Q. Liem, P. Reiss, Highly luminescent CuInS2/ZnS core/shell nanocrystals: cadmium-free quantum dots for in vivo imaging, Chem. Mater. 21 (2009) 2422–2429. https://doi.org/10.1021/cm900103b.

Cited By

Crossref Google Scholar
Synthesis and characterization of ZnS and Ag-ZnS nanoparticles for photocatalytic degradation of aqueous pollutants
Submitted
2024-10-31
Available online
2024-12-06
How to Cite
Afzali, A. H., Seddiqi, A., Akbari, Z., Hajiebrahimi, M., Alamdari, S., & Mirzaee, O. (2024). Synthesis and characterization of ZnS and Ag-ZnS nanoparticles for photocatalytic degradation of aqueous pollutants. Synthesis and Sintering, 4(4), 248-255. https://doi.org/10.53063/synsint.2024.44258