Neutron shielding performance of polyethylene-7% B and Al-30 wt% B4C composites fabricated via hot-press sintering

  • Masomeh Ghayebloo 1
  • Zeinab Naghsh Nejad 2
  • Nafiseh Araghian 2
  • Hamzeh Foratirad 3
  • Amir Movafeghi 2
  • 1 Department of Materials Science and Engineering, University of Bonab, P.O. Box 5551761167, Bonab, Iran
  • 2 Reactor and Nuclear Safety Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran
  • 3 Nuclear Fuel Cycle Research School, Nuclear Science and Technology Research Institute (NSTRI), Tehran, Iran

Abstract

The current research aims to investigate the neutron shielding features of polyethylene-7% B  and Al-30 wt% B4C composites that are fabricated via the hot-press sintering. The practical analysis was conducted via Neutron radiography and simulation through MCNP code. The results illustrated the Al-30 wt% B4C with 5 mm thickness has equivalent neutron absorption properties with 14 mm thickness of PE-%7 B. Composites with higher density and homogenous distribution of B4C have a better neutron shield property. Al-30 wt% B4C Composite fabricated at 650 °C has a higher neutron absorption property. Experimental and simulation findings confirmed each other at the lower thicknesses and Al-30 wt% B4C has better neutron shielding than PE-7% B. At thicknesses over 1 cm, the amount of cross-sectional area of polyethylene-7% B  and Al-30 wt% B4C composites are near to each other. By increasing the thicknesses of composites, the relative total dose reduction and the shield properties of composites are enhanced.

Downloads

Download data is not yet available.
Keywords: Hot-press, Monte Carlo, Neutron radiography, Neutron shielding

References

[1] G. Jobson, H. Spilker, D. Methling, Castor® X/32 s—a New Dual-Purpose Cask for the Storage and Transport of Spent Nuclear Fuel, WM’00 Conference, Tucson, AZ. (2000) 39.
[2] Y. Jung, M. Lee, K. Kim, S. Ahn, 10B (n, α) 7Li reaction-induced gas bubble formation in Al–B4C neutron absorber irradiated in spent nuclear fuel pool, J. Nucl. Mater. 533 (2020) 152077. https://doi.org/10.1016/j.jnucmat.2020.152077.
[3] J. Ko, J. Park, I. Jung, G. Lee, C. Baeg, T. Kim, Shielding analysis of dual purpose casks for spent nuclear fuel under normal storage conditions, Nucl. Eng. Technol. 46 (2014) 547–556. https://doi.org/10.5516/NET.08.2013.039.
[4] J.M. Solano, T. Page, T. Hicks, P. Thorne, The use of Neutron-absorbing Materials in ILW and Spent Fuel Packages for Criticality Control, Nuclear Decommissioning Authority: Moor Row, UK. (2012).
[5] M. Ravichandran, A. Manikandan, M. Sundaram Omkumar, Investigations on properties of Al-B4C composites synthesized through powder metallurgy route, Appl. Mech. Mater. 852 (2016) 93–97. https://doi.org/10.4028/www.scientific.net/AMM.852.93.
[6] G. Bonnet, V. Rohr, X.-G. Chen, J.-L. Bernier, R. Chiocca, H. Issard, Use of Alcan’s Al-B4C metal matrix composites as neutron absorber material in TN International’s transportation and storage casks, Packag., Transp., Storage Secur. Radioact. Mater. 20 (2009) 98–102. https://doi.org/10.1179/174651009X416880.
[7] G. Manohar, K. Pandey, S. Maity, Characterization of Boron Carbide (B4C) particle reinforced aluminium metal matrix composites fabricated by powder metallurgy techniques–A review, Mater. Today Proc. 45 (2021) 6882–6888. https://doi.org/10.1016/j.matpr.2020.12.1087.
[8] M. Paidar, O. Oladimeji Ojo, H. Ezatpour, A. Heidarzadeh, Influence of multi-pass FSP on the microstructure, mechanical properties and tribological characterization of Al/B4C composite fabricated by accumulative roll bonding (ARB), Surf. Coat. Technol. 361 (2019) 159–169. https://doi.org/10.1016/j.surfcoat.2019.01.043.
[9] L. Zhang, Z. Wang, Q. Li, J. Wu, G. Shi, et al., Microtopography and mechanical properties of vacuum hot pressing Al/B4C composites, Ceram. Int. 44 (2018) 3048–55. https://doi.org/10.1016/j.ceramint.2017.11.065.
[10] D.B. Miracle, S.L. Donaldson, S.D. Henry, C. Moosbrugger, G.J. Anton, et al., ASM Handbook, ASM International Materials Park, Ohio. 21 (2001).
[11] J. Hashim, L. Looney, M. Hashmi, Metal matrix composites: production by the stir casting method, J. Mater. Process. Technol. 92 (1999) 1–7. https://doi.org/10.1016/S0924-0136(99)00118-1.
[12] G. De With, Note on the temperature dependence of the hardness of boron carbide, J. Less-Common Met. 95 (1983) 133–138. https://doi.org/10.1016/0022-5088(83)90392-2.
[13] L. Zhang, J. Shi, Ch. Shen, X. Zhou, Sh. Peng, X. Long, B4C-Al composites fabricated by the powder metallurgy process, Appl. Sci. 7 (2017) 1009. https://doi.org/10.3390/app7101009.
[14] J. Onoro, M.D. Salvador, L.E.G. Cambronero, High-temperature mechanical properties of aluminium alloys reinforced with boron carbide particles, Mater. Sci. Eng. A. 499 (2009) 421–426. https://doi.org/10.1016/j.msea.2008.09.013.
[15] F. Toptan, A. Kilicarslan, A. Karaaslan, M. Cigdem, I. Kerti, Processing and microstructural characterisation of AA 1070 and AA 6063 matrix B4Cp reinforced composites, Mater. Des. 31 (2010) S87–S91. https://doi.org/10.1016/j.matdes.2009.11.064.
[16] M. Kubota, Solid-state reaction in mechanically milled and spark plasma sintered Al–B4C composite materials, J. Alloys Compd. 504 (2010) S319–S322. https://doi.org/10.1016/j.jallcom.2010.03.224.
[17] S. Chand, P. Chandrasekhar, R.K. Sarangi, R.K Nayak, Influence of B4C particles on processing and strengthening mechanisms in aluminum metal matrix composites-a review, Mater. Today Proc. 18 (2019) 5356–5363. https://doi.org/10.1016/j.matpr.2019.07.562.
[18] M. Li, K. Ma, L. Jiang, H. Yang, E. J Lavernia, et al., Synthesis and mechanical behavior of nanostructured Al 5083/n-TiB2 metal matrix composites, Mater. Sci. Eng. A. 656 (2016) 241–248. https://doi.org/10.1016/j.msea.2016.01.031.
[19] R. Casati, M. Vedani, Metal matrix composites reinforced by nano-particles—a review, Metals. 4 (2014) 65–83. https://doi.org/10.3390/met4010065.
[20] J. Abenojar, F. Velasco, M.A. Martinez, Optimization of processing parameters for the Al+ 10% B4C system obtained by mechanical alloying, J. Mater. Process. Technol. 184 (2007) 441–446. https://doi.org/10.1016/j.jmatprotec.2006.11.122.
[21] S. Jianmin, Z. Ling, C. Jing, S. Chunlei, L. Jiarong, Z. Xiaosong, Corrosion Behavior of Al-B4C Composite in Spent Nuclear Fuel Storage Environments, J. Chin. Soc. Corros. Prot. 33 (2013) 419–424.
[22] S.M.J. Mortazavi, M. Kardan, S. Sina, H. Baharvand, N. Sharafi, Design and fabrication of high density borated polyethylene nanocomposites as a neutron shield, Int. J. Radiat. Res. 14 (2016) 379.
[23] J. Lin, G. Ran, P. Lei, C. Ye, S. Huang, et al., Microstructure analysis of neutron absorber Al/B4C metal matrix composites, Metals. 7 (2017) 567. https://doi.org/10.3390/met7120567.
[24] P. Zhang, Y. Li, W. Wang, Z. Gao, B. Wang, The design, fabrication and properties of B4C/Al neutron absorbers, J. Nucl. Mater. 437 (2013) 350–358. https://doi.org/10.1016/j.jnucmat.2013.02.050.
[25] T. Yamazaki, K. Sanada, T. Nishiyama, H. Ishii, Development of neutron absorber (MaxusTm) for high burn-up spent nuclear fuel, Proceedings of the 15th International Symposium on the Packaging and Transportation of Radioactive Materials, Miami, Florida, USA. (2007) 1149–1154.
[26] X. Pang, Y. Xian, W. Wang, P. Zhang, Tensile properties and strengthening effects of 6061Al/12 wt% B4C composites reinforced with nano-Al2O3 particles, J. Alloys Compd. 768 (2018) 476–484. https://doi.org/10.1016/j.jallcom.2018.07.072.
[27] HS. Chen, WX. Wang, Y.L. Li, J. Zhou, H.H. Nie, Q.C. Wu, The design, microstructure and mechanical properties of B4C/6061Al neutron absorber composites fabricated by SPS, Mater. Des. 94 (2016) 360–367. https://doi.org/10.1016/j.matdes.2016.01.030.
[28] R. Belon, G. Antou, N. Pradeilles, A. Maître, D. Gosset, Mechanical behaviour at high temperature of spark plasma sintered boron carbide ceramics, Ceram. Int. 43 (2017) 6631–6635. https://doi.org/10.1016/j.ceramint.2017.02.053.
[29] D. Igwesi, O.S. Thomas, Determination of Thermal Neutron Macroscopic Cross Section for Two Polythene Based Slabs Using Monte Carlo N-Particle Code, J. Multidiscip. Eng. Sci. Technol. 1 (2014) 281–284.
[30] Standard Test Method for Water Absorption, Bulk Density, Apparent Porosity, and Apparent Specific Gravity of Fired Whiteware Products, ASTM C373-88(2006). https://doi.org/10.1520/C0373-88R06.
[31] D.B. Pelowitz, MCNPXTM user’s manual, Los Alamos Natl. Lab. Los Alamos, USA. (2005).

Cited By

Crossref Google Scholar
Neutron shielding performance of polyethylene-7% B and Al-30 wt% B4C composites fabricated via hot-press sintering
Submitted
2024-09-23
Available online
2024-11-15
How to Cite
Ghayebloo, M., Naghsh Nejad, Z., Araghian, N., Foratirad, H., & Movafeghi, A. (2024). Neutron shielding performance of polyethylene-7% B and Al-30 wt% B4C composites fabricated via hot-press sintering. Synthesis and Sintering, 4(4), 241-247. https://doi.org/10.53063/synsint.2024.44250