Enhanced methyl green adsorption of ZIF-8 metal-organic framework: Insights from different solvents

  • Saeid Zahedi Asl 1
  • Fahimeh Hooriabad Saboor 1
  • 1 Department of Chemical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran

Abstract

This study investigates the effect of solvent type on the structural properties and adsorption performance of the ZIF-8 metal-organic framework for removing various dyes including, methyl green (MG), methylene blue (MB), and methyl orange (MO) from water in acidic and alkaline environments. ZIF-8 samples were synthesized using zinc nitrate, methylimidazole, and three different solvents including, water, methanol, and ethanol under atmospheric pressure and 70 °C. Characterization using BET, XRD, FT-IR, and TGA techniques sheds light on the structural, chemical, and thermal properties of ZIF-8 samples. Among the samples, ZIF-8/M, synthesized using methanol, stands out, demonstrating the high surface area of 2172.7 m2/g, large total pore volume of 1.5412 cm3/g, and high crystallinity of 31.9% with improved thermal stability. Furthermore, ZIF-8/M shows better adsorption performance for methyl green with a removal percentage of 81.9%, 87.1%, and an adsorption capacity of 20.5 mg/g and 21.8 mg/g, in acidic and alkaline environments, respectively. Enhanced dye adsorption of ZIF-8/M is associated with both physical and effective chemical adsorption mechanisms via tuning the environment's acidity.

Downloads

Download data is not yet available.
Keywords: ZIF-8, Metal-organic framework, Solvent effect, Dye adsorption, Methyl green

References

[1] R.K. Mishra, Fresh water availability and its global challenge, Br. J. Multidiscip. Adv. Stud. 4 (2023) 1–7. https://doi.org/10.37745/bjmas.2022.0207.
[2] A. Ahmad, T. Azam, Water purification technologies, Bottled and Packaged Water, Woodhead Publishing. (2019) 83–120. https://doi.org/10.1016/B978-0-12-815272-0.00004-0.
[3] L. Rani, J. Kaushal, A.L. Srivastav, P. Mahajan, A critical review on recent developments in MOF adsorbents for the elimination of toxic heavy metals from aqueous solutions, Environ. Sci. Pollut. Res. 27 (2020) 44771–44796. https://doi.org/10.1007/s11356-020-10738-8.
[4] J. Kaushal, P. Mahajan, N. Kaur, A review on application of phytoremediation technique for eradication of synthetic dyes by using ornamental plants, Environ. Sci. Pollut. Res. 28 (2021) 67970–67989. https://doi.org/10.1007/s11356-021-16672-7.
[5] H. Solayman, M.A. Hossen, A. Abd Aziz, N.Y. Yahya, K.H. Leong, et al., Performance evaluation of dye wastewater treatment technologies: A review, J. Environ. Chem. Eng. 11 (2023) 109610. https://doi.org/10.1016/j.jece.2023.109610.
[6] R. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A.-G. Mahmoud, et al., A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety, Ecotoxicol. Environ. Saf. 231 (2022) 113160. https://doi.org/10.1016/j.ecoenv.2021.113160.
[7] A.K. Alsukaibi, Various approaches for the detoxification of toxic dyes in wastewater, Processes. 10 (2022) 1968. https://doi.org/10.3390/pr10101968.
[8] V.K.-M. Au, Recent advances in the use of metal-organic frameworks for dye adsorption, Front. Chem. 8 (2020) 708. https://doi.org/10.3389/fchem.2020.00708.
[9] N. Singh, G. Nagpal, S. Agrawal, Water purification by using adsorbents: a review, Environ. Technol. Innov. 11 (2018) 187–240. https://doi.org/10.1016/j.eti.2018.05.006.
[10] V.F. Yusuf, N.I. Malek, S.K. Kailasa, Review on metal–organic framework classification, synthetic approaches, and influencing factors: applications in energy, drug delivery, and wastewater treatment, ACS Omega. 7 (2022) 44507–44531. https://doi.org/10.1021/acsomega.2c05310.
[11] D. Jiang, M. Chen, H. Wang, G. Zeng, D. Huang, et al., The application of different typological and structural MOFs-based materials for the dyes adsorption, Coord. Chem. Rev. 380 (2019) 471–483. https://doi.org/10.1016/j.ccr.2018.11.002.
[12] Z. Pouramini, S.M. Mousavi, A. Babapoor, S.A. Hashemi, C.W. Lai, et al., Effect of metal atom in zeolitic imidazolate frameworks (ZIF-8 & 67) for removal of dyes and antibiotics from wastewater: a review, Catalysts. 13 (2023) 155. https://doi.org/10.3390/catal13010155.
[13] R. Seetharaj, P. Vandana, P. Arya, S. Mathew, Dependence of solvents, pH, molar ratio and temperature in tuning metal organic framework architecture, Arab. J. Chem. 12 (2019) 295–315. https://doi.org/10.1016/j.arabjc.2016.01.003.
[14] B. Zhang, J. Zhang, C. Liu, X. Sang, L. Peng, et al., Solvent determines the formation and properties of metal–organic frameworks, RSC Adv. 5 (2015) 37691–37696. https://doi.org/10.1039/C5RA02440D.
[15] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, et al., Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. 103 (2006) 10186–10191. https://doi.org/10.1073/pnas.0602439103.
[16] R. Banerjee, H. Furukawa, D. Britt, C. Knobler, M. O’Keeffe, O.M. Yaghi, Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties, J. Am. Chem. Soc. 131 (2009) 3875–3877. https://doi.org/10.1021/ja809459e.
[17] M. S’ari, H. Blade, S. Cosgrove, R. Drummond-Brydson, N. Hondow, et al., Characterization of amorphous solid dispersions and identification of low levels of crystallinity by transmission electron microscopy, Mol. Pharm. 18 (2021) 1905–1919. https://doi.org/10.1021/acs.molpharmaceut.0c00918.
[18] Y. Miyah, A. Lahrichi, M. Idrissi, S. Boujraf, H. Taouda, F. Zerrouq, Assessment of adsorption kinetics for removal potential of Crystal Violet dye from aqueous solutions using Moroccan pyrophyllite, J. Assoc. Arab Univ. Basic Appl. Sci. 23 (2017) 20–28. https://doi.org/10.1016/j.jaubas.2016.06.001.
[19] A. Paul, G. Vyas, P. Paul, D.N. Srivastava, Gold-nanoparticle-encapsulated ZIF-8 for a mediator-free enzymatic glucose sensor by amperometry, ACS Appl. Nano Mater. 1 (2018) 3600–3607. https://doi.org/10.1021/acsanm.8b00748
[20] J. Cravillon, S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, M. Wiebcke, Rapid room-temperature synthesis and characterization of nanocrystals of a prototypical zeolitic imidazolate framework, Chem. Mater. 21 (2009) 1410–1412. https://doi.org/10.1021/cm900166h.
[21] Y. Zhang, Y. Jia, M. Li, L.a. Hou, Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature, Sci. Rep. 8 (2018) 9597. https://doi.org/10.1038/s41598-018-28015-7.
[22] Y. Li, H. Sun, C. Yang, Z. Yan, J.-Y. Ge, et al., Metal–Organic Frameworks-Based Nanoplatform for Treatment of Breast Cancer, ACS Appl. Nano Mater. 7 (2024) 10532–10542. https://doi.org/10.1021/acsanm.4c00984.
[23] A. Ganesan, J. Leisen, R. Thyagarajan, D.S. Sholl, S. Nair, Hierarchical ZIF-8 materials via acid gas-induced defect sites: synthesis, characterization, and functional properties, ACS Appl. Mater. Interfaces. 15 (2023) 40623–40632. https://doi.org/10.1021/acsami.3c08344.
[24] M.S. Mel’gunov, Application of the simple Bayesian classifier for the N2 (77 K) adsorption/desorption hysteresis loop recognition, Adsorption. 29 (2023) 199–208. https://doi.org/10.1007/s10450-022-00369-5.
[25] K. Noda, M. Ohashi, K. Ishida, Viscosities and densities at 298.15 K for mixtures of methanol, acetone, and water, J. Chem. Eng. Data. 27 (1982) 326–328. https://doi.org/10.1021/je00029a028.
[26] X. Liu, Y. Sun, Effect of ethanol on the morphology and textual properties of ZSM-5 zeolite, Catalysts. 10 (2020) 198. https://doi.org/10.3390/catal10020198.
[27] A.A. Tezerjani, R. Halladj, S. Askari, Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties, RSC Adv. 11 (2021) 19914–19923. https://doi.org/10.1039/D1RA02856A.
[28] A. Karami, R. Shomal, R. Sabouni, M.H. Al-Sayah, A. Aidan, Parametric study of methyl orange removal using metal–organic frameworks based on factorial experimental design analysis, Energies. 15 (2022) 4642. https://doi.org/10.3390/en15134642.
[29] H. Zhang, X. Shi, J. Li, P. Kumar, B. Liu, Selective dye adsorption by zeolitic imidazolate framework-8 loaded UiO-66-NH2, Nanomaterials. 9 (2019) 1283. https://doi.org/10.3390/nano9091283.
[30] V.A. Tran, A.N. Kadam, S.-W. Lee, Adsorption-assisted photocatalytic degradation of methyl orange dye by zeolite-imidazole-framework-derived nanoparticles, J. Alloys Compd. 835 (2020) 155414. https://doi.org/10.1016/j.jallcom.2020.155414.
[31] M.A. Nazir, M.A. Bashir, T. Najam, M.S. Javed, S. Suleman, et al., Combining structurally ordered intermetallic nodes: Kinetic and isothermal studies for removal of malachite green and methyl orange with mechanistic aspects, Microchem. J. 164 (2021) 105973. https://doi.org/10.1016/j.microc.2021.105973.
[32] E. Santoso, R. Ediati, Z. Istiqomah, D.O. Sulistiono, R.E. Nugraha, et al., Facile synthesis of ZIF-8 nanoparticles using polar acetic acid solvent for enhanced adsorption of methylene blue, Micropor. Mesopor. Mater. 310 (2021) 110620. https://doi.org/10.1016/j.micromeso.2020.110620.
[33] A.S. Al‐Wasidi, I.I. AlZahrani, A.M. Naglah, M.G. El‐Desouky, M.A. Khalil, et al., Effective removal of methylene blue from aqueous solution using metal‐organic framework; modelling analysis, statistical physics treatment and DFT calculations, ChemistrySelect. 6 (2021) 11431–11447. https://doi.org/10.1002/slct.202102330.
[34] A. Alinejad, S. Sadeghi, M. Ghaderpoori, S. Sahebi, A. Ghaderpoury, et al., High adsorption of methylene blue from aqueous solutions using leaf-shaped ZIF-8, J. Environ. Anal. Chem. 101 (2021) 2354–2367. https://doi.org/10.1080/03067319.2019.1702170.
[35] C. Gu, W. Weng, C. Lu, P. Tan, Y. Jiang, et al., Decorating MXene with tiny ZIF-8 nanoparticles: An effective approach to construct composites for water pollutant removal, Chin. J. Chem. Eng. 42 (2022) 42–48. https://doi.org/10.1016/j.cjche.2021.06.004.
[36] M. Ikram, S. Mutahir, M. Humayun, M.A. Khan, J.Y. Al-Humaidi, et al., Facile synthesis of ZIF-67 for the adsorption of methyl green from wastewater: integrating molecular models and experimental evidence to comprehend the removal mechanism, Molecules. 27 (2022) 8385. https://doi.org/10.3390/molecules27238385.

Cited By

Crossref Google Scholar
Enhanced methyl green adsorption of ZIF-8 metal-organic framework: Insights from different solvents
Submitted
2024-08-24
Available online
2024-09-27
How to Cite
Zahedi Asl, S., & Hooriabad Saboor, F. (2024). Enhanced methyl green adsorption of ZIF-8 metal-organic framework: Insights from different solvents. Synthesis and Sintering, 4(3), 219-225. https://doi.org/10.53063/synsint.2024.43244