Comsol Multiphysics modeling of an electrochemical biosensor using carbon nanotubes for detecting urinary estrogen receptor

  • Lenah Serai Wangare 1
  • Thamsanqa Mafika 1
  • Muneebah Ally Said El-Kitany 1
  • Shahla Azizi 1
  • 1 Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, via Mersin 10, Türkiye

Abstract

A class of steroid hormones known as estrogens is essential for the health of the heart, bones, and reproductive system. Changes in estrogen levels have been connected to several health problems, such as endocrine disorders, metabolic syndromes, and cancer. In pharmaceutical applications, environmental monitoring, and medical diagnostics, biosensors that measure estrogen levels are essential. This study models estrogen detection biosensors based on urine liquid, horseradish peroxidase biorecognition, and carbon nanotubes (CNT) using Comsol Multiphysics. This study demonstrates that most interactions happen at the upper boundary of the concave pillars put inside the box. Besides, it shows that the velocity has the highest value between the concave pillars inside the box. The results demonstrate that the number of interactions (absorption and adsorption) rises with increasing the concave pillars' area, affecting the biosensor output.

Downloads

Download data is not yet available.
Keywords: Biosensors, Estrogen detection, Nanomaterials, Hormone monitoring, Electrochemical sensors

References

[1] S. Nilsson, J.Å. Gustafsson, Biological role of estrogen and estrogen receptors, Crit. Rev. Biochem. Mol. Biol. 37 (2002) 1–28. https://doi.org/10.1080/10409230290771438.
[2] N. Heldring, A. Pike, S. Andersson, J. Matthews, G. Cheng, et al., Estrogen Receptors: How Do They Signal and What Are Their Targets, Physiol. Rev. 87 (2007) 905–931. https://doi.org/10.1152/physrev.00026.2006.
[3] S. Nilsson, S. Mäkelä, E. Treuter, M. Tujague, J. Thomsen, et al., Mechanisms of Estrogen Action, Physiol. Rev. 81 (2001) 1535–65. https://doi.org/10.1152/physrev.2001.81.4.1535.
[4] X. Lu, J. Sun, X. Sun, Recent advances in biosensors for the detection of estrogens in the environment and food, TrAC, Trends Anal. Chem. 127 (2020) 115882. https://doi.org/10.1016/j.trac.2020.115882.
[5] S.A. Ozkan, B. Uslu, M. Kemal Sezgintürk, Biosensors; Fundamentals, Emerging Technologies, and Applications, CRC Press. (2023).
[6] L.C. Clark, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery, Ann. N. Y. Acad. Sci. 102 (1962) 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.
[7] M. Murata, M. Nakayama, H. Irie, K. Yakabe, K. Fukuma, et al. Novel Biosensor for the Rapid Measurement of Estrogen Based on a Ligand-Receptor Interaction, Anal. Sci. 17 (2001) 387–390. https://doi.org/10.2116/analsci.17.387.
[8] S. De, I.G. Macara, D.A. Lannigan, Novel biosensors for the detection of estrogen receptor ligands, J. Steroid. Biochem. Mol. Biol. 96 (2005) 235–244. https://doi.org/10.1016/j.jsbmb.2005.04.030.
[9] J.E. Im, J.A. Han, B.K. Kim, J.H. Han, T.S. Park, et al., Electrochemical detection of estrogen hormone by immobilized estrogen receptor on Au electrode, Surf. Coat. Technol. 205 (2010) S275–S278. https://doi.org/10.1016/j.surfcoat.2010.08.006.
[10] T.T.C. Tseng, A. Gusviputri, L.N.Q. Hoa, A simple, sensitive and compact electrochemical ELISA for estradiol based on chitosan deposited platinum wire microelectrodes, J. Electroanal. Chem. 758 (2015) 59–67. https://doi.org/10.1016/j.jelechem.2015.10.017.
[11] C. Zutz, K. Wagener, D. Yankova, S. Eder, E. Möstl, et al., A robust high-throughput fungal biosensor assay for the detection of estrogen activity, Steroids. 126 (2017) 57–65. https://doi.org/10.1016/j.steroids.2017.07.005.
[12] A. Wang, Y. Ding, L. Li, D. Duan, Q. Mei, et al., A novel electrochemical enzyme biosensor for detection of 17β-estradiol by mediated electron-transfer system, Talanta. 192 (2019) 478–485. https://doi.org/10.1016/j.talanta.2018.09.018.
[13] C. Li, Y. Wei, S. Zhang, W. Tan, Advanced methods to analyze steroid estrogens in environmental samples, Environ. Chem. Lett. 18 (2020) 543–559. https://doi.org/10.1007/s10311-019-00961-2.
[14] COMSOL, Introduction to Comsol Multiphysics, (2013).
[15] E.J.F. Dickinson, H. Ekström, E. Fontes, COMSOL Multiphysics®: Finite element software for electrochemical analysis. A mini-review, Electrochem. Commun. 40 (2014) 71–74. https://doi.org/10.1016/j.elecom.2013.12.020.
[16] M. Auriol, Y. Filali-Meknassi, R.D. Tyagi, C.D. Adams, Oxidation of natural and synthetic hormones by the horseradish peroxidase enzyme in wastewater, Chemosphere. 68 (2007) 1830–1837. https://doi.org/10.1016/j.chemosphere.2007.03.045.
[17] H.Y. Zheng, O.A. Alsager, C.S. Wood, J.M. Hodgkiss, N.O.V. Plank, Carbon nanotube field effect transistor aptasensors for estrogen detection in liquids, J. Vac. Sci. Technol. B. 33 (2015) 06F904. https://doi.org/10.1116/1.4935246.
[18] V.N. Popov, Carbon nanotubes: Properties and application, Mater. Sci. Eng. R: Rep. 43 (2004) 61–102. https://doi.org/10.1016/j.mser.2003.10.001.
[19] J.V. Kumar, N. Shylashree, S.G. Gojanur, G.V.T. Raju, V.V. Bhupathiraju, M. Channegowda, Design and Analysis of a Biosensor for the Detection of Estrogen Hormonal Levels, Bionanoscience. 12 (2022) 439–450. https://doi.org/10.1007/s12668-022-00951-9.
[20] R. Florencio-Silva, G.R.D.S. Sasso, E. Sasso-Cerri, M.J. Simões, P.S. Cerri, Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells, Biomed. Res. Int. 2015 (2015) 421746. https://doi.org/10.1155/2015/421746.
[21] T. Bevan, R. Carriveaul, L. Goneau, P. Cadieux, H. Razvi, Numerical Simulation of Peristaltic Urine Flow in a Stented Ureter, Am. J. Biomed. Sci. 26 (2012) 233–248. https://doi.org/10.5099/aj120300236.
[22] Y.M. Fazil Marickar, Electrical conductivity and total dissolved solids in urine, Urol. Res. 38 (2010) 233–235. https://doi.org/10.1007/s00240-009-0228-y.
[23] The Foundation for Research on Information Technologies in Society, physical properties.

Cited By

Crossref Google Scholar
Comsol Multiphysics modeling of an electrochemical biosensor using carbon nanotubes for detecting urinary estrogen receptor
Submitted
2024-07-18
Available online
2024-08-26
How to Cite
Serai Wangare, L., Mafika, T., Ally Said El-Kitany, M., & Azizi, S. (2024). Comsol Multiphysics modeling of an electrochemical biosensor using carbon nanotubes for detecting urinary estrogen receptor. Synthesis and Sintering, 4(3), 191-196. https://doi.org/10.53063/synsint.2024.43234