Synthesis of molybdenum carbide using mechanochemical and thermal approaches

  • Pegah Mohazab 1
  • Samad Ghasemi 1
  • Akbar Heidarpour 1
  • 1 Department of Metallurgy and Materials Engineering, Hamedan University of Technology, Hamedan, 65155-579, Iran

Abstract

The carbothermic reduction of  MoS2 using Mg, an efficient sulfur scavenger, was carried out by two very different routes, i.e., mechanochemical reaction and heat treatment. The thermodynamic calculation results show that Mo2C and MgS are the phases formed when the elements are combined, and carbothermic reduction of molybdenite takes place. XRD analysis data indicates no reaction occurred at 1, 2, and 5 h of milling by the mechanochemical method, and the initial phases MoS2, Mg, and C were identified. On the other hand, after 7 hours of milling, Mo2C and MgS phases finally emerged. Through heat treatment, the desired Mo2C and MgS phases were successfully prepared with the crystal diffraction spots obvious at 700, 800, and 900 °C, respectively. Both of these methods produced powders which were then washed with a 10% 1M HCl solution, and as a result, a reasonable yield of pure molybdenum carbide was obtained.

Downloads

Download data is not yet available.
Keywords: Mechanochemical reaction, Molybdenite, Magnesium, Carbon, Molybdenum carbide

References

[1] Y. Li, X. Zhang, Z. Chen, Y. Wang, W. Liu, Synthesis and Characterization of Molybdenum Carbide Nanoparticles for High-Performance Hard Coatings, Mater. Sci. Eng. B. 229 (2024) 114699. https://doi.org/10.1016/j.mseb.2023.
[2] X. Li, D. Ma, L. Chen, X. Bao, Fabrication of molybdenum carbide catalysts over multi-walled carbon nanotubes by carbothermal hydrogen reduction, Catal. Letters. 116 (2007) 63–69. https://doi.org/10.1007/s10562-007-9093-x.
[3] W.F. Chen, J.T. Muckerman, E. Fujita, Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts, Chem. Commun. 49 (2013) 8896–8909. https://doi.org/10.1039/c3cc44076a.
[4] C.K. Gupta, Extractive metallurgy of molybdenum, CRC-Press. (2017). https://doi.org/10.1201/9780203756287.
[5] Z. Fang Cao, H. Zhong, G. Yi Liu, Y. ren Qiu, S. Wang, Molybdenum extraction from molybdenite concentrate in NaCl electrolyte, J. Taiwan Inst. Chem. Eng. 41 (2010) 338–343. https://doi.org/10.1016/j.jtice.2009.11.007.
[6] H.Q. Chang, K. He, G.H. Zhang, S. Jiao, K.C. Chou, Desulfurizer-Enhanced Carbothermal Reduction of MoS2 to Synthesize Mo2C, Jom. 72 (2020) 4030–4041. https://doi.org/10.1007/s11837-020-04333-y.
[7] P.K. Tripathy, R.H. Rakhasia, Chemical processing of a low-grade molybdenite concentrate to recover molybdenum, Miner. Process. Extr. Metall. 115 (2006) 8–14. https://doi.org/10.1179/174328506X91329.
[8] M. Patel, J. Subrahmanyam, Synthesis of nanocrystalline molybdenum carbide (Mo2C) by solution route, Mater. Res. Bull. 43 (2008) 2036–2041. https://doi.org/10.1016/J.MATERRESBULL.2007.09.025.
[9] S. Meng, X. Xue, Y. Weng, S. Jiang, G. Li, et al., Synthesis and characterization of molybdenum carbide catalysts on different carbon supports, Catal. Today. 402 (2022) 266–275. https://doi.org/10.1016/J.CATTOD.2022.04.020.
[10] H. Zhao, K. Cai, Z. Ma, Z. Cheng, T. Jia, et al., Synthesis of molybdenum carbide superconducting compounds by microwave-plasma chemical vapor deposition, J. Appl. Phys. 123 (2018) 053301. https://doi.org/10.1063/1.5010101.
[11] J. Temuujin, N. Setoudeh, N.J. Welham, Comparative study of mechanical activation of molybdenite (MoS2) with and without magnesium (Mg) addition, Mong. J. Chem. 16 (2016) 30–33. https://doi.org/10.5564/mjc.v16i0.666.
[12] L. Takacs, P. Baláž, A.R. Torosyan, Ball milling-induced reduction of MoS2 with Al, J. Mater. Sci. 41 (2006) 7033–7039. https://doi.org/10.1007/s10853-006-0950-6.
[13] S.G. Najafabadi, M. Hasan Abbasi, A. Saidi, Thermodynamic investigation of lime-enhanced molybdenite reduction using methane-containing gases, Thermochim. Acta. 503–504 (2010) 46–54. https://doi.org/10.1016/J.TCA.2010.03.006.
[14] R. Padilla, M.C. Ruiz, H.Y. Sohn, Reduction of molybdenite with carbon in the presence of lime, Metall. Mater. Trans. B. 28 (1997) 265–274. https://doi.org/10.1007/s11663-997-0093-4.
[15] V.N. Kolosov, M.N. Miroshnichenko, Synthesis of Magnesium Thermal Molybdenum Powders with a Highly Developed Surface, Theor. Found. Chem. Eng. 57 (2023) 1058–1065. https://doi.org/10.1134/S0040579523050123/METRICS.
[16] D.V. Dudina, B.B. Bokhonov, Materials Development Using High-Energy Ball Milling: A Review, J. Compos. Sci. 6 (2022) 188. https://doi.org/10.3390/jcs6070188.
[17] Z.P. Xia, Y.Q. Shen, J.J. Shen, Z.Q. Li, Mechanosynthesis of molybdenum carbides by ball milling at room temperature, J. Alloys Compd. 453 (2008) 185–190. https://doi.org/10.1016/j.jallcom.2006.11.166.
[18] S. Yuan, S. Xu, Z. Liu, G. Huang, C. Zhang, et al., Ultra-small molybdenum carbide nanoparticles in situ entrapped in mesoporous carbon sphere as an efficient catalyst for hydrogen evolution, ChemCatChem. 11 (2019) 2643–2648. https://doi.org/10.1002/cctc.201900324.
[19] G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall. 1 (1953) 22–31. https://doi.org/10.1016/0001-6160(53)90006-6.
[20] HSC Chemistry for Windows, version 5.1.
[21] G.B. Schaffer, P.G. McCormick, Combustion synthesis by mechanical alloying, Scr. Metall. 23 (1989) 835–838. https://doi.org/10.1016/0036-9748(89)90255-X.
[22] L. Takacs, Self-sustaining reactions induced by ball milling, Prog. Mater. Sci. 47 (2002) 355–414. https://doi.org/10.1016/S0079-6425(01)00002-0.
[23] Z. Han, S. Zhou, N. Wang, Q. Zhang, T. Zhang, W. Ran, Crystal structure and hydrogen storage behaviors of Mg/MoS2 composites from ball milling, J. Wuhan Univ. Technol. Mater. Sci. Ed. 31 (2016) 773–778. https://doi.org/10.1007/S11595-016-1444-2.
[24] M. Raviathul Basariya, V.C. Srivastava, N.K. Mukhopadhyay, Effect of Milling Time on Structural Evolution and Mechanical Properties of Garnet Reinforced EN AW6082 Composites, Metall. Mater. Trans. A. 46 (2015) 1360–1373. https://doi.org/10.1007/s11661-014-2685-3.
[25] L.K. Wei, S.Z. Abd Rahim, M.M. Al Bakri Abdullah, A.T.M. Yin, M.F. Ghazali, et al., Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review, Materials (Basel). 16 (2023) 4635. https://doi.org/10.3390/ma16134635.
[26] H. Hu, Q. Chen, Z. Yin, G. Gottstein, P. Zhang, G. Guo, Structural change of mechanically activated molybdenite and the effect of mechanical activation on molybdenite, Metall. Mater. Trans. B. 35 (2004) 1203–1207. https://doi.org/10.1007/s11663-004-0074-9.
[27] H. Shalchian, J.V. Khaki, A. Babakhani, M.T. Parizi, Investigating the Effect of Mechanical Activation Parameters on Structural Changes and Leaching Rate of Molybdenite Concentrate, Procedia Mater. Sci. 11 (2015) 754–760. https://doi.org/10.1016/j.mspro.2015.11.074.
[28] K. Sheybani, S. Javadpour, Mechano-thermal reduction of molybdenite (MoS2) in the presence of Sulfur scavenger: New method for production of molybdenum carbide, Int. J. Refract. Met. Hard Mater. 92 (2020) 105277. https://doi.org/10.1016/J.IJRMHM.2020.105277.
[29] L. Wang, G.H. Zhang, K.C. Chou, Study on oxidation mechanism and kinetics of MoO2 to MoO3 in air atmosphere, Int. J. Refract. Met. Hard Mater. 57 (2016) 115–124. https://doi.org/10.1016/j.ijrmhm.2016.03.001.
[30] N. Makeswaran, C. Orozco, A.K. Battu, E. Deemer, C.V. Ramana, Structural, Optical and Mechanical Properties of Nanocrystalline Molybdenum Thin Films Deposited under Variable Substrate Temperature, Materials (Basel). 15 (2022) 754. https://doi.org/10.3390/ma15030754.
[31] T. Meebupha, S. Inthidec, P. Sricharoenchai, Y. Matsubara, Effect of molybdenum content on heat treatment behavior of multi-alloyed white cast iron, Mater. Trans. 58 (2017) 655–662. https://doi.org/10.2320/matertrans.M2016396.

Cited By

Crossref Google Scholar
Synthesis of  molybdenum carbide using mechanochemical and thermal approaches
Submitted
2024-05-07
Available online
2024-09-22
How to Cite
Mohazab, P., Ghasemi, S., & Heidarpour, A. (2024). Synthesis of molybdenum carbide using mechanochemical and thermal approaches. Synthesis and Sintering, 4(3), 211-218. https://doi.org/10.53063/synsint.2024.43231