Additive manufacturing of AISI 304L stainless steel: A review of processing parameters and mechanical performance

  • Aliasghar Abouchenari 1
  • Mohamad Javad Jalilpour 2
  • Mohammad Reza Ahmadpour Yazdi 3
  • 1 Department of Materials Engineering, Shahid Bahonar University, Kerman, Iran
  • 2 Department of Civil Engineering, Kharazmi University, Tehran, Iran
  • 3 Department of Materials Science and Engineering, Sharif University of Technology, P.O. Box 11365-9466, Tehran, Iran

Abstract

Additive manufacturing (AM) has become a favorable method for producing 304L stainless steel (SS) for various industrial applications, which is owing to its favorable characteristics including corrosion resistance, mechanical performance, and design flexibility. This review paper presents a comprehensive overview of the processing factors along with the mechanical performance of AM-fabricated 304L SS (AM304LSS). Firstly a discussion is provided for the fundamental principles of AM techniques that are common for processing SS304L. This includes selective laser melting (SLM), laser beam powder bed fusion (LB-PBF), direct metal laser sintering (DMLS), directed energy deposition (DED), wire-and-arc additive manufacturing (WAAM). Subsequently, the impact of key processing factors i.e. laser power, and powder characteristics on the microstructure and mechanical properties of AM304LSS is presented. In addition, this article examines recent progress in process optimization strategies and post-processing techniques for improving and enhancing the mechanical properties and surface finish of AM 304L stainless steel components. Finally, significant insights are provided for researchers, engineers, and practitioners involved in the advancement and application of AM304LSS components.

Downloads

Download data is not yet available.
Keywords: Direct metal laser sintering, 304L stainless steel, Selective laser melting, Directed energy deposition (DED), Three-dimensional printing

References

[1] E.-J. Kim, C.-M. Lee, D.-H. Kim, The effect of post-processing operations on mechanical characteristics of 304L stainless steel fabricated using laser additive manufacturing, J. Mater. Res. Technol. 15 (2021) 1370–1381. https://doi.org/10.1016/j.jmrt.2021.08.142.
[2] M.-T. Chen, Z. Gong, T. Zhang, W. Zuo, Y. Zhao, et al., Mechanical behavior of austenitic stainless steels produced by wire arc additive manufacturing, Thin-Walled Struct. 196 (2024) 111455. https://doi.org/10.1016/j.tws.2023.111455.
[3] H.E. Sabzi, S.-H. Lim, D.D. Crociata, R. Castellote-Alvarez, M. Simonelli, et al., Genetic design of precipitation-hardening stainless steels for additive manufacturing, Acta Mater. 274 (2024) 120018. https://doi.org/10.1016/j.actamat.2024.120018.
[4] J.O. Milewski, Additive manufacturing metal, the art of the possible, Additive Manufacturing of Metals, Springer, Cham. 258 (2017) 7–33. https://doi.org/10.1007/978-3-319-58205-4_2.
[5] L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, et al., Additive manufacturing of metals: the technology, materials, design and production, Springer, Cham. (2017). https://doi.org/10.1007/978-3-319-55128-9.
[6] J. Bedmar, A. Riquelme, P. Rodrigo, B. Torres, J. Rams, Comparison of Different Additive Manufacturing Methods for 316L Stainless Steel, Materials. 14 (2021) 6504. https://doi.org/10.3390/ma14216504.
[7] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, et al., Additive manufacturing of metallic components – Process, structure and properties, Prog. Mater. Sci. 92 (2018) 112–224. https://doi.org/10.1016/j.pmatsci.2017.10.001.
[8] J. Mazumder, D. Dutta, N. Kikuchi, A. Ghosh, Closed loop direct metal deposition: art to part, Opt. Lasers Eng. 34 (2000) 397–414. https://doi.org/10.1016/S0143-8166(00)00072-5.
[9] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Thermal process maps for predicting solidification microstructure in laser fabrication of thin-wall structures, J. Mater. Process. Technol. 178 (2006) 135–142. https://doi.org/10.1016/j.jmatprotec.2006.03.155.
[10] S. Bontha, N.W. Klingbeil, P.A. Kobryn, H.L. Fraser, Effects of process variables and size-scale on solidification microstructure in beam-based fabrication of bulky 3D structures, Mater. Sci. Eng.: A 513–514 (2009) 311–318. https://doi.org/10.1016/j.msea.2009.02.019.
[11] A. Saboori, A. Aversa, G. Marchese, S. Biamino, M. Lombardi, P. Fino, Microstructure and Mechanical Properties of AISI 316L Produced by Directed Energy Deposition-Based Additive Manufacturing: A Review, Appl. Sci. 10 (2020) 3310. https://doi.org/10.3390/app10093310.
[12] Y. Wang, W. Wen, S. Wu, C. Wang, Z. Yu, et al., Maize Plant Phenotyping: Comparing 3D Laser Scanning, Multi-View Stereo Reconstruction, and 3D Digitizing Estimates, Remote Sens. 11 (2019) 63. https://doi.org/10.3390/rs11010063.
[13] Z. Wang, T.A. Palmer, A.M. Beese, Effect of processing parameters on microstructure and tensile properties of austenitic stainless steel 304L made by directed energy deposition additive manufacturing, Acta Mater. 110 (2016) 226–235. https://doi.org/10.1016/j.actamat.2016.03.019.
[14] L. Gardner, The use of stainless steel in structures, Prog. Struct. Eng. Mater. 7 (2005) 45–55. https://doi.org/10.1002/pse.190.
[15] R.E. Schramm, R.P. Reed, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A. 6 (1975) 1345–1351. https://doi.org/10.1007/BF02641927.
[16] Z. Zhu, W. Li, Q.B. Nguyen, X. An, W. Lu, et al., Enhanced strength–ductility synergy and transformation-induced plasticity of the selective laser melting fabricated 304L stainless steel, Addit. Manuf. 35 (2020) 101300. https://doi.org/10.1016/j.addma.2020.101300.
[17] J. Jeong, Y. Lee, J.M. Park, D.J. Lee, I. Jeon, et al., Metastable δ-ferrite and twinning-induced plasticity on the strain hardening behavior of directed energy deposition-processed 304L austenitic stainless steel, Addit. Manuf. 47 (2021) 102363. https://doi.org/10.1016/j.addma.2021.102363.
[18] F. Vakili-Tahami, A.H. Daei-Sorkhabi, F.R. Biglari, Experimental Study of the Creep Behaviour of the Cold-Drawn 304L Stainless Steel, Strain. 47 (2011) 111–120. https://doi.org/10.1111/j.1475-1305.2010.00746.x.
[19] K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel, Mater. Des. 50 (2013) 581–586. https://doi.org/10.1016/j.matdes.2013.03.056.
[20] P. Deng, Q. Peng, E.-H. Han, W. Ke, C. Sun, Z. Jiao, Effect of irradiation on corrosion of 304 nuclear grade stainless steel in simulated PWR primary water, Corros. Sci. 127 (2017) 91–100. https://doi.org/10.1016/j.corsci.2017.08.010.
[21] S.E. Ziemniak, M. Hanson, Corrosion behavior of 304 stainless steel in high temperature, hydrogenated water, Corros. Sci. 44 (2002) 2209–2230. https://doi.org/10.1016/S0010-938X(02)00004-5.
[22] S. Pathak, S. Zulić, J. Kaufman, J. Kopeček, O. Stránský, et al., Post-processing of selective laser melting manufactured SS-304L by laser shock peening, J. Mater. Res. Technol. 19 (2022) 4787–4792. https://doi.org/10.1016/j.jmrt.2022.07.014.
[23] M. Ghayoor, K. Lee, Y. He, C.-h. Chang, B.K. Paul, S. Pasebani, Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties, Addit. Manuf. 32 (2020) 101011. https://doi.org/10.1016/j.addma.2019.101011.
[24] L. Bait, L. Azzouz, N. Madaoui, N. Saoula, Influence of substrate bias voltage on the properties of TiO2 deposited by radio-frequency magnetron sputtering on 304L for biomaterials applications, Appl. Surf. Sci. 395 (2017) 72–77. https://doi.org/10.1016/j.apsusc.2016.07.101.
[25] H. Yeom, T. Dabney, N. Pocquette, K. Ross, F.E. Pfefferkorn, K. Sridharan, Cold spray deposition of 304L stainless steel to mitigate chloride-induced stress corrosion cracking in canisters for used nuclear fuel storage, J. Nucl. Mater. 538 (2020) 152254. https://doi.org/10.1016/j.jnucmat.2020.152254.
[26] D. D’Andrea, Additive Manufacturing of AISI 316L Stainless Steel: A Review, Metals. 13 (2023) 1370. https://doi.org/10.3390/met13081370.
[27] C.Y. Yap, C.K. Chua, Z.L. Dong, Z.H. Liu, D.Q. Zhang, et al., Review of selective laser melting: Materials and applications, Appl. Phys. Rev. 2 (2015) 041101. https://doi.org/10.1063/1.4935926.
[28] P.K. Gokuldoss, Selective laser melting: Materials and applications, MDPI. (2020). https://doi.org/10.3390/books978-3-03928-579-2.
[29] I. Yadroitsev, I. Yadroitsava, A. Du Plessis, E. MacDonald, Fundamentals of laser powder bed fusion of metals, Elsevier. (2021). https://doi.org/10.1016/C2020-0-01200-4.
[30] I. Yadroitsev, I. Yadroitsava, A. Du Plessis, Basics of laser powder bed fusion, Fundamentals of laser powder bed fusion of metals, Elsevier. (2021) 15–38. https://doi.org/10.1016/B978-0-12-824090-8.00024-X.
[31] W. Liu, H. Wei, A. Liu, Y. Zhang, Multi-index co-evaluation of metal laser direct deposition: An investigation of energy input effect on energy efficiency and mechanical properties of 316l parts, J. Manuf. Process. 76 (2022) 277–290. https://doi.org/10.1016/j.jmapro.2022.02.016.
[32] D. Dev Singh, S. Arjula, A. Raji Reddy, Functionally Graded Materials Manufactured by Direct Energy Deposition: A review, Mater. Today Proc. 47 (2021) 2450–2456. https://doi.org/10.1016/j.matpr.2021.04.536.
[33] M.A. Melia, H.-D.A. Nguyen, J.M. Rodelas, E.J. Schindelholz, Corrosion properties of 304L stainless steel made by directed energy deposition additive manufacturing, Corros. Sci. 152 (2019) 20–30. https://doi.org/10.1016/j.corsci.2019.02.029.
[34] Q. Chao, V. Cruz, S. Thomas, N. Birbilis, P. Collins, et al., On the enhanced corrosion resistance of a selective laser melted austenitic stainless steel, Scr. Mater. 141 (2017) 94–98. https://doi.org/10.1016/j.scriptamat.2017.07.037.
[35] S. Shin, S.-M. Kwon, C. Kim, J. Lee, J. Hwang, H. Kim, Optimization of Direct Energy Deposition of 304L Stainless Steel through Laser Process Parameters, J. Weld. Join. 39 (2021) 182–188. https://doi.org/10.5781/JWJ.2021.39.2.7.
[36] V. Vinoth, S. Sathiyamurthy, U. Natarajan, D. Venkatkumar, J. Prabhakaran, K. Sanjeevi Prakash, Examination of microstructure properties of AISI 316L stainless steel fabricated by wire arc additive manufacturing, Mater. Today Proceed. 66 (2022) 702–706. https://doi.org/10.1016/j.matpr.2022.04.011.
[37] I.Tabernero, A. Paskual, P. Álvarez, A. Suárez, Study on Arc Welding Processes for High Deposition Rate Additive Manufacturing, Proc. CIRP. 68 (2018) 358–362. https://doi.org/10.1016/j.procir.2017.12.095.
[38] M. Sowrirajan, M. Vijayananthan, G. Seenivasagan, J. Sundaresan, A new approach to the fabrication of thin-walled plate component through typical wire arc additive manufacturing, J. Adv. Mech. Sci. 1 (2022) 8–13. https://doi.org/10.5281/zenodo.7046021.
[39] L. Ji, J. Lu, C. Liu, C. Jing, H. Fan, S. Ma, Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing, MATEC Web of Conferences, EDP Sci. 128 (2017) 03006. https://doi.org/10.1051/matecconf/201712803006.
[40] Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications, ASTM A240/A240M-22a. (2015).
[41] J. Long, M. Wang, W. Zhao, X. Zhang, Y. Wei, W. Ou, High-power wire arc additive manufacturing of stainless steel with active heat management, Sci. Technol. Weld. Join. 27 (2022) 256–264. https://doi.org/10.1080/13621718.2022.2045127.
[42] C.S. Kriewall, A.T. Sutton, M.-C. Leu, J.W. Newkirk, Investigation of Heat-Affected 304L SS Powder and its Effect on Built Parts in Selective Laser Melting, Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium, University of Texas at Austin (2016) 625–639.
[43] C.M. Smudde, C.R. D'Elia, C.W. San Marchi, M.R. Hill, J.C. Gibeling, The influence of residual stress on fatigue crack growth rates of additively manufactured Type 304L stainless steel, Int. J. Fatigue. 162 (2022) 106954. https://doi.org/10.1016/j.ijfatigue.2022.106954.
[44] T.R. Smith, J.D. Sugar, J.M. Schoenung, C. San Marchi, Relationship between manufacturing defects and fatigue properties of additive manufactured austenitic stainless steel, Mater. Sci. Eng: A 765 (2019) 138268. https://doi.org/10.1016/j.msea.2019.138268.
[45] J.V. Gordon, C.V. Haden, H.F. Nied, R.P. Vinci, D.G. Harlow, Fatigue crack growth anisotropy, texture and residual stress in austenitic steel made by wire and arc additive manufacturing, Mater. Sci. Eng: A 724 (2018) 431–438. https://doi.org/10.1016/j.msea.2018.03.075.
[46] C. Jing, Z. Chen, B. Liu, T. Xu, J. Wang, et al., Improving mechanical strength and isotropy for wire-arc additive manufactured 304L stainless steels via controlling arc heat input, Mater. Sci. Eng: A 845 (2022) 143223. https://doi.org/10.1016/j.msea.2022.143223.
[47] M.H. Sehhat, A.T. Sutton, C.-H. Hung, J.W. Newkirk, M.C. Leu, Investigation of Mechanical Properties of Parts Fabricated with Gas- and Water-Atomized 304L Stainless Steel Powder in the Laser Powder Bed Fusion Process, JOM. 74 (2022) 1088–1095. https://doi.org/10.1007/s11837-021-05029-7.
[48] D.-H. Lee, B. Sun, S. Lee, D. Ponge, E.A. Jägle, D. Raabe, Comparative study of hydrogen embrittlement resistance between additively and conventionally manufactured 304L austenitic stainless steels, Mater. Sci. Eng: A 803 (2021) 140499. https://doi.org/10.1016/j.msea.2020.140499.
[49] S. Lee, J.W. Pegues, N. Shamsaei, Fatigue behavior and modeling for additive manufactured 304L stainless steel: The effect of surface roughness, Int. J. Fatigue. 141 (2020) 105856. https://doi.org/10.1016/j.ijfatigue.2020.105856.
[50] C. Hawk, B. Simonds, J. Tanner, R. Pacheco, M. Brand, et al., Laser spot welding of additive manufactured 304L stainless steel, Weld. World. 66 (2022) 895–906. https://doi.org/10.1007/s40194-022-01265-w.
[51] T. Krentz, P. Korinko, A. McWilliams, Fracture and Tensile Characterization of Additively Manufactured Type 300 Series Stainless Steel in the Baseline and Hydrogen Charged Conditions, Pressure Vessels & Piping Conference, ASME. (2022) PVP2022-84723. https://doi.org/10.1115/PVP2022-84723.
[52] A.T. Sutton, C.S. Kriewall, S. Karnati, M.C. Leu, J.W. Newkirk, Characterization of AISI 304L stainless steel powder recycled in the laser powder-bed fusion process, Addit. Manuf. 32 (2020) 100981. https://doi.org/10.1016/j.addma.2019.100981.
[53] N.C. Ferreri, R. Pokharel, V. Livescu, D.W. Brown, M. Knezevic, et al., Effects of heat treatment and build orientation on the evolution of ϵ and α′ martensite and strength during compressive loading of additively manufactured 304L stainless steel, Acta Mater. 195 (2020) 59–70. https://doi.org/10.1016/j.actamat.2020.04.036.
[54] H. Zhang, C. Li, G. Yao, Y. Zhang, Effect of inclusion interface evolution on the thermal stability of cellular substructures in additively manufactured stainless steel, Mater. Sci. Eng: A 841 (2022) 143045. https://doi.org/10.1016/j.msea.2022.143045.
[55] M. Ghayoor, S. Mirzababaei, A. Sittiho, I. Charit, B.K. Paul, S. Pasebani, Thermal stability of additively manufactured austenitic 304L ODS alloy, J. Mater. Sci. Technol. 83 (2021) 208–218. https://doi.org/10.1016/j.jmst.2020.12.033.
[56] P. Deng, H. Yin, M. Song, D. Li, Y. Zheng, et al., On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels: Roles of Heavy Element Segregation and Stacking Fault Energy, JOM. 72 (2020) 4232–4243. https://doi.org/10.1007/s11837-020-04427-7.
[57] H. Zhang, M. Xu, Z. Liu, C. Li, Y. Zhang, Role of local recrystallization behavior on fatigue performance of SLMed 304L austenitic stainless steels, Mater. Charact. 177 (2021) 111159. https://doi.org/10.1016/j.matchar.2021.111159.
[58] Q.B. Nguyen, Z. Zhu, F.L. Ng, B.W. Chua, S.M.L. Nai, J. Wei, High mechanical strengths and ductility of stainless steel 304L fabricated using selective laser melting, J. Mater. Sci. Technol. 35 (2019) 388–394. https://doi.org/10.1016/j.jmst.2018.10.013.
[59] H. Zhang, M. Xu, P. Kumar, C. Li, Z. Liu, Y. Zhang, Fatigue life prediction model and entropy generation of 304L stainless steel fabricated by selective laser melting, J. Mater. Proc. Technol. 297 (2021) 117279. https://doi.org/10.1016/j.jmatprotec.2021.117279.
[60] L.B. Tomanek, D.S. Stutts, T. Pan, F. Liou, Influence of porosity on the thermal, electrical, and mechanical performance of selective laser melted stainless steel, Addit. Manuf. 39 (2021) 101886. https://doi.org/10.1016/j.addma.2021.101886.
[61] H. Zhang, M. Xu, P. Kumar, C. Li, W. Dai, et al., Enhancement of fatigue resistance of additively manufactured 304L SS by unique heterogeneous microstructure, Virtual Phys. Prototyp. 16 (2021) 125–145. https://doi.org/10.1080/17452759.2021.1881869.
[62] J.G. Kim, J.B. Seol, J.M. Park, H. Sung, S.H. Park, H.S. Kim, Effects of Cell Network Structure on the Strength of Additively Manufactured Stainless Steels, Met. Mater. Int. 27 (2021) 2614–2622. https://doi.org/10.1007/s12540-021-00991-y.
[63] T. Amine, C.S. Kriewall, J.W. Newkirk, Long-Term Effects of Temperature Exposure on SLM 304L Stainless Steel, JOM. 70 (2018) 384–389. https://doi.org/10.1007/s11837-017-2656-4.
[64] C.-H. Hung, A. Sutton, Y. Li, Y. Shen, H.-L. Tsai, M.C. Leu, Enhanced mechanical properties for 304L stainless steel parts fabricated by laser-foil-printing additive manufacturing, J. Manuf. Proc. 45 (2019) 438–446. https://doi.org/10.1016/j.jmapro.2019.07.030.
[65] C.M. Smudde, C.W. San Marchi, M.R. Hill, J.C. Gibeling, Effects of residual stress on orientation dependent fatigue crack growth rates in additively manufactured stainless steel, Int. J. Fatigue. 169 (2023) 107489. https://doi.org/10.1016/j.ijfatigue.2022.107489.
[66] J.-M. Kim, H.-H. Jin, J. Kwon, S.H. Kang, B.-S. Lee, Effects of cellular segregation for high strength and ductility of additively manufactured 304L stainless steel, Mater. Charact. 194 (2022) 112364. https://doi.org/10.1016/j.matchar.2022.112364.
[67] J. Talonen, H. Hänninen, P. Nenonen, G. Pape, Effect of strain rate on the strain-induced γ → α′-martensite transformation and mechanical properties of austenitic stainless steels, Metal. Mater.Trans. A. 36 (2005) 421–432. https://doi.org/10.1007/s11661-005-0313-y.
[68] P. Gargarella, C.S. Kiminami, E.M. Mazzer, R.D. Cava, L.A. Basilio, et al., Phase Formation, Thermal Stability and Mechanical Properties of a Cu-Al-Ni-Mn Shape Memory Alloy Prepared by Selective Laser Melting, Mater. Res. 18 (2015) 35–38. https://doi.org/10.1590/1516-1439.338914.
[69] T. Pan, S. Karnati, Y. Zhang, X. Zhang, C.-H. Hung, et al., Experiment characterization and formulation estimation of tensile properties for selective laser melting manufactured 304L stainless steel, Mater. Sci. Eng: A 798 (2020) 140086. https://doi.org/10.1016/j.msea.2020.140086.
[70] P. Shi, W. Ren, T. Zheng, Z. Ren, X. Hou, et al., Enhanced strength–ductility synergy in ultrafine-grained eutectic high-entropy alloys by inheriting microstructural lamellae, Nat. Commun. 10 (2019) 489. https://doi.org/10.1038/s41467-019-08460-2.
[71] A. McWilliams, M. Morgan, P. Korinko, Hydrogen Effects on Fracture Toughness of Additively Manufactured Type 304L Stainless Steel, ASME 2019 Pressure Vessels & Piping Conference. (2019).
[72] T.R. Smith, C. San Marchi, J.D. Sugar, D.K. Balch, Effects of Extreme Hydrogen Environments on the Fracture and Fatigue Behavior of Additively Manufactured Stainless Steels, ASME 2019 Pressure Vessels & Piping Conference. (2019).
[73] Z. Wang, A.M. Beese, Effect of chemistry on martensitic phase transformation kinetics and resulting properties of additively manufactured stainless steel, Acta Mater. 131 (2017) 410–422. https://doi.org/10.1016/j.actamat.2017.04.022.
[74] D.W. Brown, D.P. Adams, L. Balogh, J.S. Carpenter, B. Clausen, et al., Using In Situ Neutron Diffraction to Isolate Specific Features of Additively Manufactured Microstructures in 304L Stainless Steel and Identify Their Effects on Macroscopic Strength, Metall. Mater. Trans. A 50 (2019) 3399–3413. https://doi.org/10.1007/s11661-019-05240-x.
[75] E. Nishida, B. Song, M. Maguire, D. Adams, J. Carroll, et al., Dynamic compressive response of wrought and additive manufactured 304L stainless steels, EPJ Web of Conferences. 94 (2015) 01001. https://doi.org/10.1051/epjconf/20159401001.
[76] J.W. Elmer, G. Gibbs, Mechanical rolling and annealing of wire-arc additively manufactured stainless steel plates, Sci. Technol. Weld. Join. 27 (2022) 14–21. https://doi.org/10.1080/13621718.2021.1996003.
[77] B. Kemerling, J.C. Lippold, C.M. Fancher, J. Bunn, Residual stress evaluation of components produced via direct metal laser sintering, Weld. World. 62 (2018) 663–674. https://doi.org/10.1007/s40194-018-0572-z.

Cited By

Crossref Google Scholar
Additive manufacturing of AISI 304L stainless steel: A review of processing parameters and mechanical performance
Submitted
2024-05-07
Available online
2024-06-21
How to Cite
Abouchenari, A., Jalilpour, M. J., & Ahmadpour Yazdi, M. R. (2024). Additive manufacturing of AISI 304L stainless steel: A review of processing parameters and mechanical performance. Synthesis and Sintering, 4(2), 87-100. https://doi.org/10.53063/synsint.2024.42230