Advances in electrospinning techniques for synthesis of nanofibers loaded with herbal extracts and natural ingredients: A comprehensive review

  • Rashid Forouzande 1
  • Ali Akbar Gharehaghaji 1
  • Dina Mohammadi 2
  • 1 Department of Textile Engineering, Amirkabir University of Technology, Hafez Ave., Tehran 159163-4311, Iran
  • 2 Department of Mechanics and Industries, Qazvin Branch, Islamic Azad University, Qazvin, Iran

Abstract

Electrospinning offers a versatile method for synthesizing polymeric nanofibers integrated with natural compounds such as medicinal extracts, antibacterial agents, and antioxidants (e.g., Aloe vera, honey, curcumin). These composite fibers exhibit diverse potential applications spanning wound dressing, tissue engineering, drug delivery, and the food industry. Tailoring nanofiber morphologies and loading techniques enables modulation of release kinetics and controlled diffusion of extracts tailored to specific applications. Recent literature showcases an array of studies exploring the electrospinning of various polymers, including natural ingredients, for biomedical and industrial purposes. This article aims to compile and review methodologies for combining and encapsulating natural extracts within polymers via electrospinning synthesis method, alongside their applications. Our review presents a comprehensive analysis of electrospun nanofibers containing extracts and natural ingredients, encompassing their architectural diversity and factors influencing release kinetics. As more people become interested in natural materials, we expect to see a huge increase in research efforts in this field in the years to come.

Downloads

Download data is not yet available.
Keywords: Electrospinning, Synthesis, Nanofibers, Natural extract, Drug loading, Release rate

References

[1] L. Deng, X. Kang, Y. Liu, F. Feng, H. Zhang, Effects of surfactants on the formation of gelatin nanofibres for controlled release of curcumin, Food Chem. 231 (2017) 70–77. https://doi.org/10.1016/j.foodchem.2017.03.027.
[2] W. Liu, M. Graham, E.A. Evans, D.H. Reneker, Poly(meta-phenylene isophthalamide) nanofibers: Coating and post processing, J. Mater. Res. 17 (2002) 3206–3212. https://doi.org/10.1557/JMR.2002.0464.
[3] K. Zhi, Y. Sun, H. Zhao, C. Zhang, H. Peng, X. Yang, Self-assembled supramolecular material derived from traditional Chinese medicine: Injectable self-assembled natural product gel for drug delivery with biological activity, Mater. Today Commun. 23 (2020) 101149. https://doi.org/10.1016/j.mtcomm.2020.101149.
[4] X.X. Hou, X.P. Yang, F. Zhang, S.Z. Wu, E. Waclawik, Stretching-induced orientation to improve mechanical properties of electrospun pan nanocomposites, Int. J. Mod. Phys. B 22 (2008) 5913–5918. https://doi.org/10.1142/S0217979208051364.
[5] M. Mujtaba, L. Akyuz, B. Koc, M. Kaya, S. Ilk, et al., Novel, multifunctional mucilage composite films incorporated with cellulose nanofibers, Food Hydrocoll. 89 (2019) 20–28. https://doi.org/10.1016/j.foodhyd.2018.10.021.
[6] L. Feng, S.H. Li, J. Zhai, Y.L. Song, L. Jiang, D.B. Zhu, Template Based Synthesis of Aligned Polyacrylonitrile Nanofibers Using A Novel Extrusion Method, Synth. Met. 135–136 (2003) 817–818. https://doi.org/10.1016/S0379-6779(02)00909-8.
[7] L. Li, J. Xu, T. Fang, J. Geng, D. Freitag, W. Arlt, Producing PVP Nanofibers by Electrospinning in N2, Adv. Mater. Res. 560–561 (2012) 701–708. https://doi.org/10.4028/www.scientific.net/AMR.560-561.701.
[8] K. Sarkar, C. Gomez, S. Zambrano, M. Ramirez, E. de Hoyos, et al., Electrospinning to Forcespinning™, Mater. Today. 13 (2010) 12–14. https://doi.org/10.1016/S1369-7021(10)70199-1.
[9] S. Chen, B. Liu, Y. Wang, H. Cheng, X. Zhang, et al., Excellent Electrochemical Performances of Intrinsic Polyaniline Nanofibers Fabricated by Electrochemical Deposition, J. Wuhan Univ. Technol. Mater. Sci. Ed. 34 (2019) 216–222. https://doi.org/10.1007/s11595-019-2038-6.
[10] H. Iqbal, F.K. Mahar, A. Razzaq, R. Kamal, N.U. Khan, et al., Green synthesis of Cefadroxil loaded chitosan/PVA nanofibers by freeze drying, Mater. Res. Express. 6 (2019) 125094. https://doi.org/10.1088/2053-1591/ab5c8c.
[11] A.S. Shamsabadi, M. Ranjbar, H. Tavanai, A. Farnood, Electrospinning of gold nanoparticles incorporated PAN nanofibers via in-situ laser ablation of gold in electrospinning solution, Mater. Res. Express. 6 (2019) 055051. https://doi.org/10.1088/2053-1591/ab0709.
[12] A.J. Kajekar, B.M. Dodamani, A.M. Isloor, Z.A. Karim, N.B. Cheer, et al., Preparation and characterization of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection, Desalination. 365 (2015) 117–125. https://doi.org/10.1016/j.desal.2015.02.028.
[13] S. Sinha-Ray, M.W. Lee, S. Sinha-Ray, S. An, B. Pourdeyhimi, et al., Supersonic nanoblowing: a new ultra-stiff phase of nylon 6 in 20–50 nm confinement, J. Mater. Chem. C. 1 (2013) 3491–3498. https://doi.org/10.1039/C3TC30248B.
[14] H. Li, H. Wan, T. Xia, M. Chen, Y. Zhang, et al., Therapeutic angiogenesis in ischemic muscles after local injection of fragmented fibers with loaded traditional Chinese medicine, Nanoscale. 7 (2015) 13075–13087. https://doi.org/10.1039/C5NR02005K.
[15] H. Liu, Y. Bai, C. Huang, Y. Wang, Y. Ji, et al., Recent Progress of Electrospun Herbal Medicine Nanofibers, Biomolecules. 13 (2023) 184. https://doi.org/10.3390/biom13010184.
[16] W. Feng, H. Ao, C. Peng, Gut Microbiota, Short-Chain Fatty Acids, and Herbal Medicines, Front. Pharmacol. 9 (2018) 1354. https://doi.org/10.3389/fphar.2018.01354.
[17] H. Yuan, Q. Ma, L. Ye, G. Piao, The Traditional Medicine and Modern Medicine from Natural Products, Molecules. 21 (2016) 559–559. https://doi.org/10.3390/molecules21050559.
[18] S. Al-Musawi, S. Albukhaty, H. Al-Karagoly, G.M. Sulaiman, M.S. Alwahibi, et al., Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing, Molecules. 25 (2020) 4770–4770. https://doi.org/10.3390/molecules25204770.
[19] S. Ben-Shabat, L. Yarmolinsky, D. Porat, A. Dahan, Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies, Drug Deliv. Transl. Res. 10 (2020) 354–367. https://doi.org/10.1007/s13346-019-00691-6.
[20] A. Rehman Khan, S. Xiangyang, A. Ahmad, X. Mo, Electrospinning of Crude Plant Extracts for Antibacterial and Wound Healing Applications: A Review, SM J. Biomed. Eng. 4 (2018) 1024.
[21] E. Mele, Electrospinning of Essential Oils, Polymers. 12 (2020) 908. https://doi.org/10.3390/polym12040908.
[22] K.A. Hammer, C.F. Carson, T.V. Riley, Antimicrobial activity of essential oils and other plant extracts, J. Appl. Microbiol. 86 (1999) 985–990. https://doi.org/10.1046/j.1365-2672.1999.00780.x.
[23] P. Wen, Y. Wen, M.-H. Zong, R.J. Linhardt, H. Wu, Encapsulation of Bioactive Compound in Electrospun Fibers and Its Potential Application, J. Agric. Food Chem. 65 (2017) 9161–9179. https://doi.org/10.1021/acs.jafc.7b02956.
[24] A. Ullah, Y. Saito, S. Ullah, M.K. Haider, H. Nawaz, et al., Bioactive Sambong oil-loaded electrospun cellulose acetate nanofibers: Preparation, characterization, and in-vitro biocompatibility, Int. J. Biol. Macromol. 166 (2021) 1009–1021. https://doi.org/10.1016/j.ijbiomac.2020.10.257.
[25] N. Tanadchangsaeng, S. Kitmongkolpaisarn, S. Boonyagul, T. Koobkokkruad, Chemomechanical and morphological properties with proliferation of keratinocyte cells of electrospun poyhydroxyalkanoate fibers incorporated with essential oil, Polym. Adv. Technol. 29 (2018) 2364–2372. https://doi.org/10.1002/pat.4348.
[26] K.R. Ganesh, T.P. Rajan, A review on electrospinning of natural bio herbs blended with polyvinyl alcohol nanofibres for biomedical applications, J. Nat. Fibers. 19 (2022) 11984–12003. https://doi.org/10.1080/15440478.2022.2048941.
[27] Y. Guo, X. Wang, Y. Shen, K. Dong, L. Shen, A.A.A. Alzalab, Research progress, models and simulation of electrospinning technology: a review, J. Mater. Sci. 57 (2022) 58–104. https://doi.org/10.1007/s10853-021-06575-w.
[28] M. Saravanan, Development of Thespesia populnea doped PVA electrospun mat for biocompatibility studies, J. Nat. Fibers. 19 (2022) 1951–1961. https://doi.org/10.1080/15440478.2021.2002773.
[29] T. Vongsetskul, P. Phurayar, T. Chutimasakul, P. Tuchinda, S. Uamsiri, et al., Acanthus ebracteatus Vahl. extract-loaded cellulose acetate ultrafine fibers as a topical carrier for controlled-release applications, Polym. Bull. 73 (2016) 3319–3331. https://doi.org/10.1007/s00289-016-1658-7.
[30] S.-F. Shen, L.-F. Zhu, J. Liu, A. Ali, A. Zaman, et al., Novel core-shell fiber delivery system for synergistic treatment of cervical cancer, J. Drug Deliv. Sci. Technol. 59 (2020) 101865. https://doi.org/10.1016/j.jddst.2020.101865.
[31] G. Jin, M.P. Prabhakaran, D. Kai, S.K. Annamalai, K.D. Arunachalam, S. Ramakrishna, Tissue engineered plant extracts as nanofibrous wound dressing, Biomaterials. 34 (2013) 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026.
[32] Y. Wang, D.-G. Yu, Y. Liu, Y.-N. Liu, Progress of Electrospun Nanofibrous Carriers for Modifications to Drug Release Profiles, J. Funct. Biomater. 13 (2022) 289. https://doi.org/10.3390/jfb13040289.
[33] S. Tabakoglu, D. Kołbuk, P. Sajkiewicz, Multifluid electrospinning for multi-drug delivery systems: pros and cons, challenges, and future directions, Biomater. Sci. 11 (2023) 37–61. https://doi.org/10.1039/D2BM01513G.
[34] C. Huang, X. Xu, J. Fu, D.-G. Yu, Y. Liu, Recent Progress in Electrospun Polyacrylonitrile Nanofiber-Based Wound Dressing, Polymers. 14 (2022) 3266. https://doi.org/10.3390/polym14163266.
[35] Y. Zhou, M. Wang, C. Yan, H. Liu, D.-G. Yu, Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers, Biomolecules. 12 (2022) 1254. https://doi.org/10.3390/biom12091254.
[36] D. Xie, X. Zhou, B. Xiao, L. Duan, Z. Zhu, Mucus-Penetrating Silk Fibroin-Based Nanotherapeutics for Efficient Treatment of Ulcerative Colitis, Biomolecules. 12 (2022) 1263. https://doi.org/10.3390/biom12091263.
[37] Y. Du, X. Zhang, P. Liu, D.-G. Yu, R. Ge, Electrospun nanofiber-based glucose sensors for glucose detection, Front. Chem. 10 (2022) 944428. https://doi.org/10.3389/fchem.2022.944428.
[38] Y. Bai, Y. Liu, H. Lv, H. Shi, W. Zhou, et al., Processes of Electrospun Polyvinylidene Fluoride-Based Nanofibers, Their Piezoelectric Properties, and Several Fantastic Applications, Polymers. 14 (2022) 4311. https://doi.org/10.3390/polym14204311.
[39] X. Huang, W. Jiang, J. Zhou, D.-G. Yu, H. Liu, The Applications of Ferulic-Acid-Loaded Fibrous Films for Fruit Preservation, Polymers. 14 (2022) 4947. https://doi.org/10.3390/polym14224947.
[40] H. Lv, M. Zhang, P. Wang, X. Xu, Y. Liu, D.-G. Yu, Ingenious construction of Ni(DMG)2/TiO2-decorated porous nanofibers for the highly efficient photodegradation of pollutants in water, Colloids Surf. A: Physicochem. Eng. Asp. 650 (2022) 129561. https://doi.org/10.1016/j.colsurfa.2022.129561.
[41] Y. Liu, H. Lv, Y. Liu, Y. Gao, H.Y. Kim, et al., Progresses on electrospun metal–organic frameworks nanofibers and their wastewater treatment applications, Mater. Today Chem. 25 (2022) 100974. https://doi.org/10.1016/j.mtchem.2022.100974.
[42] X. Xu, H. Lv, M. Zhang, M. Wang, Y. Zhou, et al., Recent progress in electrospun nanofibers and their applications in heavy metal wastewater treatment, Front. Chem. Sci. Eng. 17 (2023) 249–275. https://doi.org/10.1007/s11705-022-2245-0.
[43] X. Cao, W. Chen, P. Zhao, Y. Yang, D.-G. Yu, Electrospun Porous Nanofibers: Pore−Forming Mechanisms and Applications for Photocatalytic Degradation of Organic Pollutants in Wastewater, Polymers. 14 (2022) 3990. https://doi.org/10.3390/polym14193990.
[44] Y. Pang, J. Pan, J. Yang, S. Zheng, C. Wang, Electrolyte/Electrode Interfaces in All-Solid-State Lithium Batteries: A Review, Electrochem. Energy Rev. 4 (2021) 169–193. https://doi.org/10.1007/s41918-020-00092-1.
[45] L. Yao, C. Sun, H. Lin, G. Li, Z. Lian, et al., Electrospun Bi-decorated BixTiyOz/TiO2 flexible carbon nanofibers and their applications on degradating of organic pollutants under solar radiation, J. Mater. Sci. Technol. 150 (2023) 114–123. https://doi.org/10.1016/j.jmst.2022.07.066.
[46] W. Jiang, P. Zhao, W. Song, M. Wang, D.-G. Yu, Electrospun Zein/Polyoxyethylene Core-Sheath Ultrathin Fibers and Their Antibacterial Food Packaging Applications, Biomolecules. 12 (2022) 1110. https://doi.org/10.3390/biom12081110.
[47] N.T. Ardekani, M. Khorram, K. Zomorodian, S. Yazdanpanah, H. Veisi, H. Veisi, Evaluation of electrospun poly (vinyl alcohol)-based nanofiber mats incorporated with Zataria multiflora essential oil as potential wound dressing, Int. J. Biol. Macromol. 125 (2019) 743–750. https://doi.org/10.1016/j.ijbiomac.2018.12.085.
[48] H. Farahani, A. Barati, M. Arjomandzadegan, E. Vatankhah, Nanofibrous cellulose acetate/gelatin wound dressing endowed with antibacterial and healing efficacy using nanoemulsion of Zataria multiflora, Int. J. Biol. Macromol. 162 (2020) 762–773. https://doi.org/10.1016/j.ijbiomac.2020.06.175.
[49] I. Garcia-Orue, G. Gainza, P. Garcia-Garcia, F.B. Gutierrez, J.J. Aguirre, et al., Composite nanofibrous membranes of PLGA/Aloe vera containing lipid nanoparticles for wound dressing applications, Int. J. Pharm. 556 (2019) 320–329. https://doi.org/10.1016/j.ijpharm.2018.12.010.
[50] O. Suwantong, U. Ruktanonchai, P. Supaphol, In vitro biological evaluation of electrospun cellulose acetate fiber mats containing asiaticoside or curcumin, J. Biomed. Mater. Res. A. 94 (2010) 1216–1225. https://doi.org/10.1002/jbm.a.32797.
[51] S. Ahmadi, A. Hivechi, S.H. Bahrami, P.B. Milan, S.S. Ashraf, Cinnamon extract loaded electrospun chitosan/gelatin membrane with antibacterial activity, Int. J. Biol. Macromol. 173 (2021) 580–590. https://doi.org/10.1016/j.ijbiomac.2021.01.156.
[52] C. Verma, P.S. Rohit, S. Anjum, B. Gupta, Novel Approach for Nanobiocomposites by Nanoencapsulation of Lecithin-Clove oil within PVA Nanofibrous Web, Mater. Today: Proceed. 15 (2019) 183–187. https://doi.org/10.1016/j.matpr.2019.04.190.
[53] J. Wang, L. Tian, L. He, N. Chen, S. Ramakrishna, et al., Lycium barbarum polysaccharide encapsulated Poly lactic-co-glycolic acid Nanofibers: cost effective herbal medicine for potential application in peripheral nerve tissue engineering, Sci. Rep. 8 (2018) 8669. https://doi.org/10.1038/s41598-018-26837-z.
[54] S.K. Jaganathan, M.P. Mani, Electrospun novel nanocomposite comprising polyurethane integrated with ayurveda amla oil for bone tissue engineering, An. Acad. Bras. Ciênc. 92 (2020) e20180369. https://doi.org/10.1590/0001-3765202020180369.
[55] M.S. Islam, B.C. Ang, A. Andriyana, A.M. Afifi, A review on fabrication of nanofibers via electrospinning and their applications, SN Appl. Sci. 1 (2019) 1248. https://doi.org/10.1007/s42452-019-1288-4.
[56] D. Li, Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel?, Adv. Mater. 16 (2004) 1151–1170. https://doi.org/10.1002/adma.200400719.
[57] N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004.
[58] A. Mtibe, M.P. Motloung, J. Bandyopadhyay, S.S. Ray, Synthetic Biopolymers and Their Composites: Advantages and Limitations—An Overview, Macromol. Rapid Commun. 42 (2021) 2100130. https://doi.org/10.1002/marc.202100130.
[59] A. Samir, F.H. Ashour, A.A.A. Hakim, M. Bassyouni, Recent advances in biodegradable polymers for sustainable applications, NPJ Mater. Degrad. 6 (2022) 68. https://doi.org/10.1038/s41529-022-00277-7.
[60] G.K. Arbade, T.U. Patro, Biocompatible Polymer Based Nanofibers for Tissue Engineering, Advances in Sustainable Polymers: Processing and Applications, Springer Singapore, Singapore. (2019) 43–66. https://doi.org/10.1007/978-981-32-9804-0_3.
[61] L. Maduna, A. Patnaik, Challenges Associated with the Production of Nanofibers, Processes. 12 (2024) 2100. https://doi.org/10.3390/pr12102100.
[62] E. Aigaje, A. Riofrio, H. Baykara, Processing, Properties, Modifications, and Environmental Impact of Nanocellulose/Biopolymer Composites: A Review, Polymers. 15 (2023) 1219. https://doi.org/10.3390/polym15051219.
[63] S. Stojanov, A. Berlec, Electrospun Nanofibers as Carriers of Microorganisms, Stem Cells, Proteins, and Nucleic Acids in Therapeutic and Other Applications, Front. Bioeng. Biotechnol. 8 (2020) 130. https://doi.org/10.3389/fbioe.2020.00130.
[64] S. Hadad, S.A.H. Goli, Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage, Int. J. Biol. Macromol. 114 (2018) 408–414. https://doi.org/10.1016/j.ijbiomac.2018.03.154.
[65] M.N. Uddin, A. Ali, M. Jobaer, S.I. Mahedi, A. Krishnamoorthy, M.A.R. Bhuiyan, Electrospun nanofibers based on plant extract bioactive materials as functional additives: possible sources and prospective applications, Mater. Adv. 5 (2024) 7862–7890. https://doi.org/10.1039/D4MA00219A.
[66] H. Avci, H. Gergeroglu, Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing, Polym. Bull. 76 (2019) 3709–3731. https://doi.org/10.1007/s00289-018-2578-5.
[67] J. Liang, L. Cui, J. Li, S. Guan, K. Zhang, J. Li, Aloe vera: A Medicinal Plant Used in Skin Wound Healing, Tissue Eng. B: Rev. 27 (2020) 455–474. https://doi.org/10.1089/ten.teb.2020.0236.
[68] K. Witkowska, M. Paczkowska-Walendowska, T. Plech, D. Szymanowska, B. Michniak-Kohn, J. Cielecka-Piontek, Chitosan-Based Hydrogels for Controlled Delivery of Asiaticoside-Rich Centella asiatica Extracts with Wound Healing Potential, Int. J. Mol. Sci. 24 (2023) 17229. https://doi.org/10.3390/ijms242417229.
[69] J. Chanaj-Kaczmarek, M. Paczkowska, T. Osmałek, B. Kaproń, T. Plech, et al., Hydrogel Delivery System Containing Calendulae flos Lyophilized Extract with Chitosan as a Supporting Strategy for Wound Healing Applications, Pharmaceutics. 12 (2020) 634. https://doi.org/10.3390/pharmaceutics12070634.
[70] C. Nicolaus, S. Junghanns, A. Hartmann, R. Murillo, M. Ganzera, I. Merfort, In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts, J. Ethnopharmacol. 196 (2017) 94–103. https://doi.org/10.1016/j.jep.2016.12.006.
[71] O. Givol, R. Kornhaber, D. Visentin, M. Cleary, J. Haik, M. Harats, A systematic review of Calendula officinalis extract for wound healing, Wound Repair Regen. 27 (2019) 548–561. https://doi.org/10.1111/wrr.12737.
[72] L. Rathod, S. Bhowmick, P. Patel, K. Sawant, Calendula flower extract loaded PVA hydrogel sheet for wound management: Optimization, characterization and in-vivo study, J. Drug Deliv. Sci. Technol. 68 (2022) 103035. https://doi.org/10.1016/j.jddst.2021.103035.
[73] L.M. Ferreira, E.D. Bandeira, M.F. Gomes, D.G. Lynch, G.N. Bastos, et al., Polyacrylamide Hydrogel Containing Calendula Extract as a Wound Healing Bandage: In Vivo Test, Int. J. Mol. Sci. 24 (2023) 3806. https://doi.org/10.3390/ijms24043806.
[74] M. Osanloo, F. Noori, A. Tavassoli, M.R. Ataollahi, A. Davoodi, et al., Effect of PCL nanofiber mats coated with chitosan microcapsules containing cinnamon essential oil for wound healing, BMC Complement. Med. Ther. 23 (2023) 84. https://doi.org/10.1186/s12906-023-03905-0.
[75] Z. Pedram Rad, J. Mokhtari, M. Abbasi, Preparation and characterization of Calendula officinalis-loaded PCL/gum arabic nanocomposite scaffolds for wound healing applications, Iran. Polym. J. 28 (2019) 51–63. https://doi.org/10.1007/s13726-018-0674-x.
[76] M. Paczkowska-Walendowska, N. Rosiak, T. Plech, T.M. Karpiński, A. Miklaszewski, et al., Electrospun Nanofibers Loaded with Marigold Extract Based on PVP/HPβCD and PCL/PVP Scaffolds for Wound Healing Applications, Materials. 17 (2024) 1736. https://doi.org/10.3390/ma17081736.
[77] Y. Shi, C. Zhang, F. Jiang, L. Zhou, L. Cai, et al., Electrospun Antimicrobial Polymeric Nanofibers in Wound Dressings, Electrospun Polymeric Nanofibers: Insight into Fabrication Techniques and Biomedical Applications, Springer International Publishing, Cham. (2023) 313–334. https://doi.org/10.1007/12_2022_136.
[78] M.M. Abdul Hameed, S.A.P. Mohamed Khan, B.M. Thamer, N. Rajkumar, H. El-Hamshary, M. El-Newehy, Electrospun nanofibers for drug delivery applications: Methods and mechanism, Polym. Adv. Technol. 34 (2023) 6–23. https://doi.org/10.1002/pat.5884.
[79] L.L. Lima, A.C.K. Bierhalz, Â.M. Moraes, Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin, Polym. Degrad. Stab. 179 (2020) 109233. https://doi.org/10.1016/j.polymdegradstab.2020.109233.
[80] I. Sriyanti, D. Edikresnha, A. Rahma, M.M. Munir, H. Rachmawati, K. Khairurrijal, Mangosteen pericarp extract embedded in electrospun PVP nanofiber mats: physicochemical properties and release mechanism of α-mangostin, Int. J. Nanomed. 13 (2018) 4927–4941. https://doi.org/10.2147/IJN.S167670.
[81] M.E. Cam, S. Cesur, T. Taskin, G. Erdemir, D.S. Kuruca, et al., Fabrication, characterization and fibroblast proliferative activity of electrospun Achillea lycaonica-loaded nanofibrous mats, Europ. Polym. J. 120 (2019) 109239. https://doi.org/10.1016/j.eurpolymj.2019.109239.
[82] P. Zahedi, I. Rezaeian, S.O. Ranaei‐Siadat, S.H. Jafari, P. Supaphol, A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages, Polym. Adv. Technol. 21 (2010) 77–95. https://doi.org/10.1002/pat.1625.
[83] İ. Uslu, S. Keskin, A. Gül, T.C. Karabulut, M.L. Aksu, Preparation and Properties of Electrospun Poly vinyl alcohol Blended Hybrid Polymer with Aloe vera and HPMC as Wound Dressing, Hacettepe J. Biol. Chem. 38 (2010) 19–25.
[84] I. Uslu, A. Aytimur, H. Serincay, Preparation of PVA / PAA / PEG / PVP Nanofibers with HPMC and Aloe Vera, Curr. Nanosci. 9 (2013) 489–493. https://doi.org/10.2174/15734137113099990054.
[85] H. Serinçay, S. Özkan, N. Yılmaz, S. Koçyiğit, İ. Uslu, et al., PVA/PAA-Based Antibacterial Wound Dressing Material with Aloe Vera, Polym.-Plast. Technol. Eng. 52 (2013) 1308–1315. https://doi.org/10.1080/03602559.2013.814671.
[86] S. Agnes Mary, V.R. Giri Dev, Electrospun herbal nanofibrous wound dressings for skin tissue engineering, J. Text. Inst. 106 (2015) 886–895. https://doi.org/10.1080/00405000.2014.951247.
[87] S. Suganya, J. Venugopal, S. Agnes Mary, S. Ramakrishna, B.S. Lakshmi, V.R. Giri Dev, Aloe vera incorporated biomimetic nanofibrous scaffold: a regenerative approach for skin tissue engineering, Iran. Polym. J. 23 (2014) 237–248. https://doi.org/10.1007/s13726-013-0219-2.
[88] S. Suganya, J. Venugopal, S. Ramakrishna, B.S. Lakshmi, V.R.G. Dev, Naturally derived biofunctional nanofibrous scaffold for skin tissue regeneration, Int. J. Biol. Macromol. 68 (2014) 135–143. https://doi.org/10.1016/j.ijbiomac.2014.04.031.
[89] I. Garcia-Orue, G. Gainza, F.B. Gutierrez, J.J. Aguirre, C. Evora, et al., Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications, Int. J. Pharm. 523 (2017) 556–566. https://doi.org/10.1016/j.ijpharm.2016.11.006.
[90] F.R. Isfahani, H. Tavanai, M. Morshed, Release of aloe vera from electrospun aloe vera-PVA nanofibrous pad, Fibers Polym. 18 (2017) 264–271. https://doi.org/10.1007/s12221-017-6954-9.
[91] S. Miguel, M. Ribeiro, P. Coutinho, I. Correia, Electrospun Polycaprolactone/Aloe Vera_Chitosan Nanofibrous Asymmetric Membranes Aimed for Wound Healing Applications, Polymers. 9 (2017) 183. https://doi.org/10.3390/polym9050183.
[92] A. Jouybar, E. Seyedjafari, A. Ardeshirylajimi, A. Zandi‐Karimi, N. Feizi, et al., Enhanced Skin Regeneration by Herbal Extract‐Coated Poly‐L‐Lactic Acid Nanofibrous Scaffold, Artif. Organs. 41 (2017) E296–E307. https://doi.org/10.1111/aor.12926.
[93] M. Naseri-Nosar, S. Farzamfar, M. Salehi, A. Vaez, R. Tajerian, M. Azami, Erythropoietin/aloe vera-releasing wet-electrospun polyvinyl alcohol/chitosan sponge-like wound dressing: In vitro and in vivo studies, J. Bioact. Compat. Polym. 33 (2018) 269–281. https://doi.org/10.1177/0883911517731793.
[94] S.A. Kheradvar, J. Nourmohammadi, H. Tabesh, B. Bagheri, Starch nanoparticle as a vitamin E-TPGS carrier loaded in silk fibroin-poly(vinyl alcohol)-Aloe vera nanofibrous dressing, Colloids Surf. B: Biointerfaces. 166 (2018) 9–16. https://doi.org/10.1016/j.colsurfb.2018.03.004.
[95] H. Ezhilarasu, R. Ramalingam, C. Dhand, R. Lakshminarayanan, A. Sadiq, et al., Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering, Int. J. Mol. Sci. 20 (2019) 5174. https://doi.org/10.3390/ijms20205174.
[96] K. Bootdee, M. Nithitanakul, Poly(d,l-lactide-co-glycolide) nanospheres within composite poly(vinyl alcohol)/aloe vera electrospun nanofiber as a novel wound dressing for controlled release of drug, Int. J. Polym. Mater. Polym. Biomater. 70 (2021) 223–230. https://doi.org/10.1080/00914037.2019.1706512.
[97] N. Aghamohamadi, N.S. Sanjani, R.F. Majidi, S.A. Nasrollahi, Preparation and characterization of Aloe vera acetate and electrospinning fibers as promising antibacterial properties materials, Mater. Sci. Eng: C. 94 (2019) 445–452. https://doi.org/10.1016/j.msec.2018.09.058.
[98] M. Ghorbani, P. Nezhad-Mokhtari, S. Ramazani, Aloe vera-loaded nanofibrous scaffold based on Zein/Polycaprolactone/Collagen for wound healing, Int. J. Biol. Macromol. 153 (2020) 921–930. https://doi.org/10.1016/j.ijbiomac.2020.03.036.
[99] S. Rafieian, H. Mahdavi, M.E. Masoumi, Improved mechanical, physical and biological properties of chitosan films using Aloe vera and electrospun PVA nanofibers for wound dressing applications, J. Ind. Text. 50 (2021) 1456–1474. https://doi.org/10.1177/1528083719866932.
[100] J. Yin, L. Xu, Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing, Int. J. Biol. Macromol. 160 (2020) 352–363. https://doi.org/10.1016/j.ijbiomac.2020.05.211.
[101] E. Zahedi, A. Esmaeili, N. Eslahi, M.A. Shokrgozar, A. Simchi, Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs for Wound Healing and Skin Tissue Engineering, Marine Drugs 17 (2019) 27. https://doi.org/10.3390/md17010027.
[102] Z. Guleken, J. Depciuch, H. Ege, G. İlbay, C. Kalkandelen, et al., Spectrochemical and biochemical assay comparison study of the healing effect of the Aloe vera and Hypericum perforatum loaded nanofiber dressings on diabetic wound, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 254 (2021) 119639–119639. https://doi.org/10.1016/j.saa.2021.119639.
[103] M.R. Zare, M. Khorram, S. Barzegar, F. Asadian, Z. Zareshahrabadi, et al., Antimicrobial core–shell electrospun nanofibers containing Ajwain essential oil for accelerating infected wound healing, Int. J. Pharm. 603 (2021) 120698. https://doi.org/10.1016/j.ijpharm.2021.120698.
[104] P. Pathalamuthu, A. Siddharthan, V.R. Giridev, V. Victoria, R. Thangam, et al., Enhanced performance of Aloe vera incorporated chitosan-polyethylene oxide electrospun wound scaffold produced using novel Spirograph based collector assembly, Int. J. Biol. Macromol. 140 (2019) 808–824. https://doi.org/10.1016/j.ijbiomac.2019.08.158.
[105] Y.-H. Shan, L.-H. Peng, X. Liu, X. Chen, J. Xiong, J.-Q. Gao, Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound, Int. J. Pharm. 479 (2015) 291–301. https://doi.org/10.1016/j.ijpharm.2014.12.067.
[106] D. Zhang, L. Li, Y. Shan, J. Xiong, Z. Hu, et al., In vivo study of silk fibroin/gelatin electrospun nanofiber dressing loaded with astragaloside IV on the effect of promoting wound healing and relieving scar, J. Drug Deliv. Sci. Technol. 52 (2019) 272–281. https://doi.org/10.1016/j.jddst.2019.04.021.
[107] A. Ali, M.A. Shahid, M.D. Hossain, M.N. Islam, Antibacterial bi-layered polyvinyl alcohol (PVA)-chitosan blend nanofibrous mat loaded with Azadirachta indica (neem) extract, Int. J. Biol. Macromol. 138 (2019) 13–20. https://doi.org/10.1016/j.ijbiomac.2019.07.015.
[108] A. Ali, M.A. Shahid, Polyvinyl Alcohol (PVA)–Azadirachta indica (Neem) Nanofibrous Mat for Biomedical Application: Formation and Characterization, J. Polym. Environ. 27 (2019) 2933–2942. https://doi.org/10.1007/s10924-019-01587-9.
[109] W.P. Chan, K.C. Huang, M.Y. Bai, Silk fibroin protein‐based nonwoven mats incorporating baicalein Chinese herbal extract: preparation, characterizations, and in vivo evaluation, J. Biomed. Mater. Res. B: Appl. Biomater. 105 (2017) 420–430. https://doi.org/10.1002/jbm.b.33560.
[110] X. Hu, X. Wang, L. Han, S. Li, W. Zhou, Antioxidant and antimicrobial polyvinyl alcohol electrospun nanofibers containing baicalein-hydroxypropyl-β-cyclodextrin inclusion complex, Colloids Surf. A: Physicochem. Eng. Asp. 614 (2021) 126135. https://doi.org/10.1016/j.colsurfa.2021.126135.
[111] J. Kang, L. Chen, S. Okubayashi, S. Sukigara, Preparation of electrospun polycaprolactone nanofibers with water‐soluble eggshell membrane and catechin, J. Appl. Polym. Sci. 124 (2012). https://doi.org/10.1002/app.35538.
[112] R.-E. Ghitescu, A.-M. Popa, A. Schipanski, C. Hirsch, G. Yazgan, et al., Catechin loaded PLGA submicron-sized fibers reduce levels of reactive oxygen species induced by MWCNT in vitro, Eur. J. Pharm. Biopharm. 122 (2018) 78–86. https://doi.org/10.1016/j.ejpb.2017.10.009.
[113] A.G. Namboodiri, R. Parameswaran, Fibro‐porous polycaprolactone membrane containing extracts of Biophytum sensitivum: A prospective antibacterial wound dressing, J. Appl. Polym. Sci. 129 (2013) 2280–2286. https://doi.org/10.1002/app.38950.
[114] E. Shoba, R. Lakra, M. Syamala Kiran, P.S. Korrapati, Fabrication of core–shell nanofibers for controlled delivery of bromelain and salvianolic acid B for skin regeneration in wound therapeutics, Biomed. Mater. 12 (2017) 035005. https://doi.org/10.1088/1748-605X/aa6684.
[115] S. Bayat, N. Amiri, E. Pishavar, F. Kalalinia, J. Movaffagh, M. Hashemi, Bromelain-loaded chitosan nanofibers prepared by electrospinning method for burn wound healing in animal models, Life Sci. 229 (2019) 57–66. https://doi.org/10.1016/j.lfs.2019.05.028.
[116] M. de Melo Brites, A.A. Cerón, S.M. Costa, R.C. Oliveira, H.G. Ferraz, et al., Bromelain immobilization in cellulose triacetate nanofiber membranes from sugarcane bagasse by electrospinning technique, Enzyme Microb. Technol. 132 (2020) 109384. https://doi.org/10.1016/j.enzmictec.2019.109384.
[117] C.L.S.d.O. Mori, N.A. dos Passos, J.E. Oliveira, T.F. Altoé, F.A. Mori, et al., Nanostructured Polylactic Acid/Candeia Essential Oil Mats Obtained by Electrospinning, J. Nanomater. 2015 (2015) 1–9. https://doi.org/10.1155/2015/439253.
[118] P. Sikareepaisan, A. Suksamrarn, P. Supaphol, Electrospun gelatin fiber mats containing a herbal— Centella asiatica —extract and release characteristic of asiaticoside, Nanotechnology. 19 (2008) 015102. https://doi.org/10.1088/0957-4484/19/01/015102.
[119] O. Suwantong, U. Ruktanonchai, P. Supaphol, Electrospun cellulose acetate fiber mats containing asiaticoside or Centella asiatica crude extract and the release characteristics of asiaticoside, Polymer. 49 (2008) 4239–4247. https://doi.org/10.1016/j.polymer.2008.07.020.
[120] C.-H. Yao, J.-Y. Yeh, Y.-S. Chen, M.-H. Li, C.-H. Huang, Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model, J. Tissue Eng. Regen. Med. 11 (2017) 905–915. https://doi.org/10.1002/term.1992.
[121] L. Zhu, X. Liu, L. Du, Y. Jin, Preparation of asiaticoside-loaded coaxially electrospinning nanofibers and their effect on deep partial-thickness burn injury, Biomed. Pharmacother. 83 (2016) 33–40. https://doi.org/10.1016/j.biopha.2016.06.016.
[122] R.A. Rebia, N.S. binti Sadon, T. Tanaka, Natural Antibacterial Reagents (Centella, Propolis, and Hinokitiol) Loaded into Poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] Composite Nanofibers for Biomedical Applications, Nanomaterials. 9 (2019) 1665–1665. https://doi.org/10.3390/nano9121665.
[123] C. Mouro, R. Fangueiro, I.C. Gouveia, Preparation and Characterization of Electrospun Double-layered Nanocomposites Membranes as a Carrier for Centella asiatica (L.), Polymers. 12 (2020) 2653–2653. https://doi.org/10.3390/polym12112653.
[124] Y. Deldar, Y. Pilehvar-Soltanahmadi, M. Dadashpour, S. Montazer Saheb, M. Rahmati-Yamchi, N. Zarghami, An in vitro examination of the antioxidant, cytoprotective and anti-inflammatory properties of chrysin-loaded nanofibrous mats for potential wound healing applications, Artif. Cells Nanomed. Biotechnol. 46 (2018) 706–716. https://doi.org/10.1080/21691401.2017.1337022.
[125] Y. Deldar, F. Zarghami, Y. Pilehvar-Soltanahmadi, M. Dadashpour, N. Zarghami, Antioxidant effects of chrysin-loaded electrospun nanofibrous mats on proliferation and stemness preservation of human adipose-derived stem cells, Cell and Tissue Banking 18 (2017) 475–487. https://doi.org/10.1007/s10561-017-9654-1.
[126] Z. Mohammadi, M. Sharif Zak, H. Majdi, E. Mostafavi, M. Barati, et al., The effect of chrysin–curcumin-loaded nanofibres on the wound-healing process in male rats, Artif. Cells Nanomed. Biotechnol. 47 (2019) 1642–1652. https://doi.org/10.1080/21691401.2019.1594855.
[127] S. Sadeghi-Soureh, R. Jafari, R. Gholikhani-Darbroud, Y. Pilehvar-Soltanahmadi, Potential of Chrysin‐loaded PCL/gelatin nanofibers for modulation of macrophage functional polarity towards anti-inflammatory/pro-regenerative phenotype, J. Drug Deliv. Sci. Technol. 58 (2020) 101802. https://doi.org/10.1016/j.jddst.2020.101802.
[128] S. Ravichandran, J. Radhakrishnan, P. Jayabal, G.D. Venkatasubbu, Antibacterial screening studies of electrospun Polycaprolactone nano fibrous mat containing Clerodendrum phlomidis leaves extract, Appl. Surf. Sci. 484 (2019) 676–687. https://doi.org/10.1016/j.apsusc.2019.04.150.
[129] I. Unalan, S.J. Endlein, B. Slavik, A. Buettner, W.H. Goldmann, et al., Evaluation of Electrospun Poly(ε-Caprolactone)/Gelatin Nanofiber Mats Containing Clove Essential Oil for Antibacterial Wound Dressing, Pharmaceutics. 11 (2019) 570–570. https://doi.org/10.3390/pharmaceutics11110570.
[130] R. Yadav, K. Balasubramanian, Polyacrylonitrile/Syzygium aromaticum hierarchical hydrophilic nanocomposite as a carrier for antibacterial drug delivery systems, RSC Adv. 5 (2015) 3291–3298. https://doi.org/10.1039/C4RA12755B.
[131] M. Hameed, A. Rasul, M. Waqas, M. Saadullah, N. Aslam, et al., Formulation and Evaluation of a Clove Oil-Encapsulated Nanofiber Formulation for Effective Wound-Healing, Molecules. 26 (2021) 2491. https://doi.org/10.3390/molecules26092491.
[132] P.S. Mohamadi, A. Hivechi, H. Bahrami, N. hemmatinegad, P.B. Milan, Antibacterial and biological properties of coconut oil loaded poly(ε-caprolactone)/gelatin electrospun membranes, J. Ind. Text. 51 (2022) 906S–930S. https://doi.org/10.1177/1528083721991595.
[133] R.F. Bonan, P.R.F. Bonan, A.U.D. Batista, F.C. Sampaio, A.J.R. Albuquerque, et al., In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil, Mater. Sci. Eng: C. 48 (2015) 372–377. https://doi.org/10.1016/j.msec.2014.12.021.
[134] J. Jeong, S. Lee, Electrospun poly(vinyl alcohol) nanofibrous membranes containing Coptidis Rhizoma extracts for potential biomedical applications, Text. Res. J. 89 (2019) 3506–3518. https://doi.org/10.1177/0040517518813679.
[135] S.B. Yang, E.H. Kim, S.H. Kim, Y.H. Kim, W. Oh, et al., Electrospinning Fabrication of Poly(vinyl alcohol)/Coptis chinensis Extract Nanofibers for Antimicrobial Exploits, Nanomaterials. 8 (2018) 734–734. https://doi.org/10.3390/nano8090734.
[136] A.R. Unnithan, P.B.T. Pichiah, G. Gnanasekaran, K. Seenivasan, N.A.M. Barakat, et al., Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering, Colloids Surf. A: Physicochem. Eng. Asp. 415 (2012) 454–460. https://doi.org/10.1016/j.colsurfa.2012.09.029.
[137] K. Nejati-Koshki, Y. Pilehvar-Soltanahmadi, E. Alizadeh, A. Ebrahimi-Kalan, Y. Mortazavi, N. Zarghami, Development of Emu oil-loaded PCL/collagen bioactive nanofibers for proliferation and stemness preservation of human adipose-derived stem cells: possible application in regenerative medicine, Drug Dev. Ind. Pharm. 43 (2017) 1978–1988. https://doi.org/10.1080/03639045.2017.1357731.
[138] Y. Pilehvar-Soltanahmadi, M. Nouri, M.M. Martino, A. Fattahi, E. Alizadeh, et al., Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat, Exp. Cell Res. 357 (2017) 192–201. https://doi.org/10.1016/j.yexcr.2017.05.015.
[139] R. Zamani, Y. Pilehvar-Soltanahmadi, E. Alizadeh, N. Zarghami, Macrophage repolarization using emu oil-based electrospun nanofibers: possible application in regenerative medicine, Artif. Cells Nanomed. Biotechnol. 46 (2018) 1258–1265. https://doi.org/10.1080/21691401.2017.1367689.
[140] P. Opanasopit, U. Ruktanonchai, O. Suwantong, S. Panomsuk, T. Ngawhirunpat, et al., Electrospun poly(vinyl alcohol) fiber mats as carriers for extracts from the fruit hull of mangosteen, J. Cosmet. Sci. 59 (2008) 233–242.
[141] O. Suwantong, P. Pankongadisak, S. Deachathai, P. Supaphol, Electrospun poly(L-lactic acid) fiber mats containing a crude Garcinia cowa extract for wound dressing applications, J. Polym. Res. 19 (2012) 9896. https://doi.org/10.1007/s10965-012-9896-3.
[142] O. Suwantong, P. Pankongadisak, S. Deachathai, P. Supaphol, Electrospun poly(l-lactic acid) fiber mats containing crude Garcinia mangostana extracts for use as wound dressings, Polym. Bull. 71 (2014) 925–949. https://doi.org/10.1007/s00289-014-1102-9.
[143] N. Charernsriwilaiwat, T. Rojanarata, T. Ngawhirunpat, M. Sukma, P. Opanasopit, Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts, Int. J. Pharm. 452 (2013) 333–343. https://doi.org/10.1016/j.ijpharm.2013.05.012.
[144] W. Samprasit, T. Rojanarata, P. Akkaramongkolporn, T. Ngawhirunpat, R. Kaomongkolgit, P. Opanasopit, Fabrication and In Vitro/In Vivo Performance of Mucoadhesive Electrospun Nanofiber Mats Containing α-Mangostin, AAPS PharmSciTech. 16 (2015) 1140–1152. https://doi.org/10.1208/s12249-015-0300-6.
[145] S. Lin, M. Chen, H. Jiang, L. Fan, B. Sun, et al., Green electrospun grape seed extract-loaded silk fibroin nanofibrous mats with excellent cytocompatibility and antioxidant effect, Colloids Surf. B: Biointerfaces. 139 (2016) 156–163. https://doi.org/10.1016/j.colsurfb.2015.12.001.
[146] D.A. Locilento, L.A. Mercante, R.S. Andre, L.H.C. Mattoso, G.L.F. Luna, et al., Biocompatible and Biodegradable Electrospun Nanofibrous Membranes Loaded with Grape Seed Extract for Wound Dressing Application, J. Nanomater. 2019 (2019) 1–11. https://doi.org/10.1155/2019/2472964.
[147] X. Han, Z. Xing, S. Si, Y. Yao, Q. Zhang, Electrospun grape seed polyphenols/gelatin composite fibers contained silver nanoparticles as biomaterials, Fibers Polym. 15 (2014) 2572–2580. https://doi.org/10.1007/s12221-014-2572-y.
[148] G. Toskas, R.-D. Hund, E. Laourine, C. Cherif, V. Smyrniotopoulos, V. Roussis, Nanofibers based on polysaccharides from the green seaweed Ulva Rigida, Carbohydr. Polym. 84 (2011) 1093–1102. https://doi.org/10.1016/j.carbpol.2010.12.075.
[149] S. Kikionis, E. Ioannou, G. Toskas, V. Roussis, Electrospun biocomposite nanofibers of ulvan/PCL and ulvan/PEO, J. Appl. Polym. Sci. 132 (2015) 1–5. https://doi.org/10.1002/app.42153.
[150] M.A. Madany, M.S. Abdel-Kareem, A.K. Al-Oufy, M. Haroun, S.A. Sheweita, The biopolymer ulvan from Ulva fasciata: Extraction towards nanofibers fabrication, Int. J. Biol. Macromol. 177 (2021) 401–412. https://doi.org/10.1016/j.ijbiomac.2021.02.047.
[151] M. Sadri, S. Arab-Sorkhi, H. Vatani, A. Bagheri-Pebdeni, New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method, Fibers Polym. 16 (2015) 1742–1750. https://doi.org/10.1007/s12221-015-5297-7.
[152] P. Pusporini, D. Edikresnha, I. Sriyanti, T. Suciati, M.M. Munir, K. Khairurrijal, Electrospun polyvinylpyrrolidone (PVP)/green tea extract composite nanofiber mats and their antioxidant activities, Mater. Res. Express. 5 (2018) 054001. https://doi.org/10.1088/2053-1591/aac1e6.
[153] Z. Liu, J. Yan, Y.-E. Miao, Y. Huang, T. Liu, Catalytic and antibacterial activities of green-synthesized silver nanoparticles on electrospun polystyrene nanofiber membranes using tea polyphenols, Compos.B: Eng. 79 (2015) 217–223. https://doi.org/10.1016/j.compositesb.2015.04.037.
[154] R. Ramalingam, C. Dhand, C.M. Leung, S.T. Ong, S.K. Annamalai, et al., Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract, Mater. Sci. Eng: C. 98 (2019) 503–514. https://doi.org/10.1016/j.msec.2018.12.135.
[155] R. Ramalingam, C. Dhand, C.M. Leung, H. Ezhilarasu, P. Prasannan, et al., Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study, Nanomaterials. 9 (2019) 462. https://doi.org/10.3390/nano9030462.
[156] F. Pourhojat, M. Sohrabi, S. Shariati, H. Mahdavi, L. Asadpour, Evaluation of poly ε-caprolactone electrospun nanofibers loaded with Hypericum perforatum extract as a wound dressing, Res. Chem. Intermed. 43 (2017) 297–320. https://doi.org/10.1007/s11164-016-2623-7.
[157] Ö. Eğri, N. Erdemir, Production of Hypericum perforatum oil-loaded membranes for wound dressing material and in vitro tests, Artif. Cells Nanomed. Biotechnol. 47 (2019) 1404–1415. https://doi.org/10.1080/21691401.2019.1596933.
[158] C. Mouro, A.P. Gomes, I.C. Gouveia, Double-layer PLLA/PEO_Chitosan nanofibrous mats containing Hypericum perforatum L. as an effective approach for wound treatment, Polym. Adv. Technol. 32 (2021) 1493–1506. https://doi.org/10.1002/pat.5185.
[159] S. Gunes, S. Tamburaci, F. Tihminlioglu, A novel bilayer zein/MMT nanocomposite incorporated with H. perforatum oil for wound healing, J. Mater. Sci.: Mater. Med. 31 (2020) 7. https://doi.org/10.1007/s10856-019-6332-9.
[160] K. Balasubramanian, K.M. Kodam, Encapsulation of therapeutic lavender oil in an electrolyte assisted polyacrylonitrile nanofibres for antibacterial applications, RSC Adv. 4 (2014) 54892–54901. https://doi.org/10.1039/C4RA09425E.
[161] H. Hajiali, M. Summa, D. Russo, A. Armirotti, V. Brunetti, et al., Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing, J. Mater. Chem. B. 4 (2016) 1686–1695. https://doi.org/10.1039/C5TB02174J.
[162] H.S. Sofi, T. Akram, A.H. Tamboli, A. Majeed, N. Shabir, F.A. Sheikh, Novel lavender oil and silver nanoparticles simultaneously loaded onto polyurethane nanofibers for wound-healing applications, Int. J. Pharm. 569 (2019) 118590. https://doi.org/10.1016/j.ijpharm.2019.118590.
[163] H. Avci, R. Monticello, R. Kotek, Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts, J. Biomater. Sci. Polym. Ed. 24 (2013) 1815–1830. https://doi.org/10.1080/09205063.2013.804758.
[164] I. Yousefi, M. Pakravan, H. Rahimi, A. Bahador, Z. Farshadzadeh, I. Haririan, An investigation of electrospun Henna leaves extract-loaded chitosan based nanofibrous mats for skin tissue engineering, Mater. Sci. Eng: C. 75 (2017) 433–444. https://doi.org/10.1016/j.msec.2017.02.076.
[165] Z. Hadisi, J. Nourmohammadi, S.M. Nassiri, The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound, Int. J. Biol. Macromol. 107 (2018) 2008–2019. https://doi.org/10.1016/j.ijbiomac.2017.10.061.
[166] S. Vakilian, M. Norouzi, M. Soufi-Zomorrod, I. Shabani, S. Hosseinzadeh, M. Soleimani, L. inermis -loaded nanofibrous scaffolds for wound dressing applications, Tissue Cell. 51 (2018) 32–38. https://doi.org/10.1016/j.tice.2018.02.004.
[167] O.E. Fayemi, A.C. Ekennia, L. Katata-Seru, A.P. Ebokaiwe, O.M. Ijomone, et al., Antimicrobial and Wound Healing Properties of Polyacrylonitrile-Moringa Extract Nanofibers, ACS Omega. 3 (2018) 4791–4797. https://doi.org/10.1021/acsomega.7b01981.
[168] C.-Y. Chin, S.-F. Ng, Development of Moringa oleifera Standardized Leaf Extract Nanofibers Impregnated onto Hydrocolloid Film as A Potential Chronic Wound Dressing, Fibers Polym. 21 (2020) 2462–2472. https://doi.org/10.1007/s12221-020-1356-9.
[169] A. Manikandan, M.P. Mani, S.K. Jaganathan, R. Rajasekar, M. Jagannath, Formation of functional nanofibrous electrospun polyurethane and murivenna oil with improved haemocompatibility for wound healing, Polym. Test. 61 (2017) 106–113. https://doi.org/10.1016/j.polymertesting.2017.05.008.
[170] A.u.R. Khan, K. Huang, Z. Jinzhong, T. Zhu, Y. Morsi, et al., PLCL/Silk fibroin based antibacterial nano wound dressing encapsulating oregano essential oil: Fabrication, characterization and biological evaluation, Colloids Surf. B: Biointerfaces. 196 (2020) 111352. https://doi.org/10.1016/j.colsurfb.2020.111352.
[171] J. Baranauskaite, E. Adomavičiūtė, V. Jankauskaitė, M. Marksa, Z. Barsteigienė, J. Bernatoniene, Formation and Investigation of Electrospun Eudragit E100/Oregano Mats, Molecules. 24 (2019) 628. https://doi.org/10.3390/molecules24030628.
[172] I. Liakos, A. Holban, R. Carzino, S. Lauciello, A. Grumezescu, Electrospun Fiber Pads of Cellulose Acetate and Essential Oils with Antimicrobial Activity, Nanomaterials. 7 (2017) 84. https://doi.org/10.3390/nano7040084.
[173] L.M.M. Costa, G.M. de Olyveira, B.M. Cherian, A.L. Leão, S.F. de Souza, M. Ferreira, Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications, Ind. Crops Prod. 41 (2013) 198–202. https://doi.org/10.1016/j.indcrop.2012.04.025.
[174] S.S. Abou Zekry, A. Abdellatif, H.M.E. Azzazy, Fabrication of pomegranate/honey nanofibers for use as antibacterial wound dressings, Wound Med. 28 (2020) 100181. https://doi.org/10.1016/j.wndm.2020.100181.
[175] W. Zhang, C. Huang, O. Kusmartseva, N.L. Thomas, E. Mele, Electrospinning of polylactic acid fibres containing tea tree and manuka oil, React. Funct. Polym. 117 (2017) 106–111. https://doi.org/10.1016/j.reactfunctpolym.2017.06.013.
[176] J. Choi, B.J. Yang, G.-N. Bae, J.H. Jung, Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration, ACS Appl. Mater. Interfaces. 7 (2015) 25313–25320. https://doi.org/10.1021/acsami.5b07441.
[177] S. Suganya, T. Senthil Ram, B.S. Lakshmi, V.R. Giridev, Herbal drug incorporated antibacterial nanofibrous mat fabricated by electrospinning: An excellent matrix for wound dressings, J. Appl. Polym. Sci. 121 (2011) 2893–2899. https://doi.org/10.1002/app.33915.
[178] P. Koushki, S.H. Bahrami, M. Ranjbar-Mohammadi, Coaxial nanofibers from poly(caprolactone)/ poly(vinyl alcohol)/Thyme and their antibacterial properties, J. Ind. Text. 47 (2018) 834–852. https://doi.org/10.1177/1528083716674906.
[179] F. Cengiz Çallıoğlu, H. Kesici Güler, E. Sesli Çetin, Emulsion electrospinning of bicomponent poly (vinyl pyrrolidone)/gelatin nanofibers with thyme essential oil, Mater. Res. Express. 6 (2019) 125013. https://doi.org/10.1088/2053-1591/ab5387.
[180] J.-X. Liu, W.-H. Dong, X.-J. Mou, G.-S. Liu, X.-W. Huang, et al., In Situ Electrospun Zein/Thyme Essential Oil-Based Membranes as an Effective Antibacterial Wound Dressing, ACS Appl. Bio Mater. 3 (2020) 302–307. https://doi.org/10.1021/acsabm.9b00823.
[181] Z. Karami, I. Rezaeian, P. Zahedi, M. Abdollahi, Preparation and performance evaluations of electrospun poly(ε‐caprolactone), poly(lactic acid), and their hybrid (50/50) nanofibrous mats containing thymol as an herbal drug for effective wound healing, J. Appl. Polym. Sci. 129 (2013) 756–766. https://doi.org/10.1002/app.38683.
[182] K.A. Rieger, J.D. Schiffman, Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers, Carbohydr. Polym. 113 (2014) 561–568. https://doi.org/10.1016/j.carbpol.2014.06.075.
[183] H. Kesici Güler, F. Cengiz Çallıoğlu, E. Sesli Çetin, Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning, J. Text. Inst. 110 (2019) 302–310. https://doi.org/10.1080/00405000.2018.1477237.
[184] H. Hosseinpor, A. Khaledi, D. Esmaeili, The properties of nanofiber scaffolds of polyurethane-Cinnamomum zeylanicum against pathogens of Pseudomonas aeruginosa and Staphylococcus aureus, Polym. Bull. 78 (2021) 223–245. https://doi.org/10.1007/s00289-019-03095-1.
[185] I. Liakos, L. Rizzello, H. Hajiali, V. Brunetti, R. Carzino, et al., Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents, J. Mater. Chem. B. 3 (2015) 1583–1589. https://doi.org/10.1039/C4TB01974A.
[186] H. Maleki, A.A. Gharehaghaji, P.J. Dijkstra, A novel honey‐based nanofibrous scaffold for wound dressing application, J. Appl. Polym. Sci. 127 (2013) 4086–4092. https://doi.org/10.1002/app.37601.
[187] A. Arslan, M. Şimşek, S.D. Aldemir, N.M. Kazaroğlu, M. Gümüşderelioğlu, Honey-based PET or PET/chitosan fibrous wound dressings: effect of honey on electrospinning process, J. Biomater. Sci. Polym. Ed. 25 (2014) 999–1012. https://doi.org/10.1080/09205063.2014.918455.
[188] W.A. Sarhan, H.M.E. Azzazy, High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects, Carbohydr. Polym. 122 (2015) 135–143. https://doi.org/10.1016/j.carbpol.2014.12.051.
[189] W.A. Sarhan, H.M.E. Azzazy, I.M. El-Sherbiny, The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers, Mater. Sci. Eng: C. 67 (2016) 276–284. https://doi.org/10.1016/j.msec.2016.05.006.
[190] B.A. Minden-Birkenmaier, R.M. Neuhalfen, B.E. Janowiak, S.A. Sell, Preliminary Investigation and Characterization of Electrospun Polycaprolactone and Manuka Honey Scaffolds for Dermal Repair, J. Eng. Fibers Fabr. 10 (2015) 155892501501000. https://doi.org/10.1177/155892501501000406.
[191] W.A. Sarhan, H.M.E. Azzazy, I.M. El-Sherbiny, Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia : Enhanced Antimicrobial and Wound Healing Activity, ACS Appl. Mater. Interfaces. 8 (2016) 6379–6390. https://doi.org/10.1021/acsami.6b00739.
[192] S. Jaganathan, A. Balaji, A.F. Ismail, R. Rajasekar, Fabrication and hemocompatibility assessment of novel polyurethane-based bio-nanofibrous dressing loaded with honey and Carica papaya extract for the management of burn injuries, Int. J. Nanomed. 11 (2016) 4339–4355. https://doi.org/10.2147/IJN.S112265.
[193] X. Yang, L. Fan, L. Ma, Y. Wang, S. Lin, et al., Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing, Mater. Design. 119 (2017) 76–84. https://doi.org/10.1016/j.matdes.2017.01.023.
[194] R. Sarkar, A. Ghosh, A. Barui, P. Datta, Repositing honey incorporated electrospun nanofiber membranes to provide anti-oxidant, anti-bacterial and anti-inflammatory microenvironment for wound regeneration, J. Mater. Sci.: Mater. Med. 29 (2018) 31. https://doi.org/10.1007/s10856-018-6038-4.
[195] S. Kanimozhi, G. Kathiresan, A. Kathalingam, H.-S. Kim, M.N.R. Doss, Organic nanocomposite Band-Aid for chronic wound healing: a novel honey-based nanofibrous scaffold, Appl. Nanosci. 10 (2020) 1639–1652. https://doi.org/10.1007/s13204-019-01247-3.
[196] A. Naeimi, M. Payandeh, A.R. Ghara, F.E. Ghadi, In vivo evaluation of the wound healing properties of bio-nanofiber chitosan/ polyvinyl alcohol incorporating honey and Nepeta dschuparensis, Carbohydr. Polym. 240 (2020) 116315. https://doi.org/10.1016/j.carbpol.2020.116315.
[197] M.Q. Khan, H. Lee, Z. Khatri, D. Kharaghani, M. Khatri, et al., Fabrication and characterization of nanofibers of honey/poly(1,4-cyclohexane dimethylene isosorbide trephthalate) by electrospinning, Mater. Sci. Eng: C. 81 (2017) 247–251. https://doi.org/10.1016/j.msec.2017.08.011.
[198] A. Ullah, S. Ullah, M.Q. Khan, M. Hashmi, P.D. Nam, et al., Manuka honey incorporated cellulose acetate nanofibrous mats: Fabrication and in vitro evaluation as a potential wound dressing, Int. J. Biol. Macromol. 155 (2020) 479–489. https://doi.org/10.1016/j.ijbiomac.2020.03.237.
[199] Y. Tang, X. Lan, C. Liang, Z. Zhong, R. Xie, et al., Honey loaded alginate/PVA nanofibrous membrane as potential bioactive wound dressing, Carbohydr. Polym. 219 (2019) 113–120. https://doi.org/10.1016/j.carbpol.2019.05.004.
[200] M.K. Gaydhane, J.S. Kanuganti, C.S. Sharma, Honey and curcumin loaded multilayered polyvinylalcohol/cellulose acetate electrospun nanofibrous mat for wound healing, J. Mater. Res. 35 (2020) 600–609. https://doi.org/10.1557/jmr.2020.52.
[201] S. Sharaf, M.E. El-Naggar, Eco-friendly technology for preparation, characterization and promotion of honey bee propolis extract loaded cellulose acetate nanofibers in medical domains, Cellulose. 25 (2018) 5195–5204. https://doi.org/10.1007/s10570-018-1921-1.
[202] M.D. Samraj.S, S.D. Kirupha, S. Elango, K. Vadodaria, Fabrication of nanofibrous membrane using stingless bee honey and curcumin for wound healing applications, J. Drug Deliv. Sci. Technol. 63 (2021) 102271. https://doi.org/10.1016/j.jddst.2020.102271.
[203] M. Ghorbani, S. Ramezani, M.-R. Rashidi, Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing, Colloids Surf. A: Physicochem. Eng. Asp. 621 (2021) 126615. https://doi.org/10.1016/j.colsurfa.2021.126615.
[204] S.K. Jaganathan, M.P. Mani, P. Prabhakaran, E. Supriyanto, A.F. Ismail, Production, blood compatibility and cytotoxicity evaluation of a single stage non-woven multicomponent electrospun scaffold mixed with sesame oil, honey and propolis for skin tissue engineering, Int. J. Polym. Anal. Charact. 24 (2019) 457–474. https://doi.org/10.1080/1023666X.2019.1602919.
[205] O. Suwantong, P. Opanasopit, U. Ruktanonchai, P. Supaphol, Electrospun cellulose acetate fiber mats containing curcumin and release characteristic of the herbal substance, Polymer. 48 (2007) 7546–7557. https://doi.org/10.1016/j.polymer.2007.11.019.
[206] J.G. Merrell, S.W. McLaughlin, L. Tie, C.T. Laurencin, A.F. Chen, L.S. Nair, Curcumin‐loaded poly(ε‐caprolactone) nanofibres: Diabetic wound dressing with anti‐oxidant and anti‐inflammatory properties, Clin. Exp. Pharmacol. Physiol. 36 (2009) 1149–1156. https://doi.org/10.1111/j.1440-1681.2009.05216.x.
[207] Y. Chen, J. Lin, Y. Fei, H. Wang, W. Gao, Preparation and characterization of electrospinning PLA/curcumin composite membranes, Fibers Polym. 11 (2010) 1128–1131. https://doi.org/10.1007/s12221-010-1128-z.
[208] Y. Chen, J. Lin, Y. Wan, Y. Fei, H. Wang, W. Gao, Preparation and blood compatibility of electrospun PLA/curcumin composite membranes, Fibers Polym. 13 (2012) 1254–1258. https://doi.org/10.1007/s12221-012-1254-x.
[209] T.T.T. Nguyen, C. Ghosh, S.-G. Hwang, L.D. Tran, J.S. Park, Characteristics of curcumin-loaded poly (lactic acid) nanofibers for wound healing, J. Mater. Sci. 48 (2013) 7125–7133. https://doi.org/10.1007/s10853-013-7527-y.
[210] D. Brahatheeswaran, A. Mathew, R.G. Aswathy, Y. Nagaoka, K. Venugopal, et al., Hybrid fluorescent curcumin loaded zein electrospun nanofibrous scaffold for biomedical applications, Biomed. Mater. 7 (2012) 045001. https://doi.org/10.1088/1748-6041/7/4/045001.
[211] B. Dhurai, N. Saraswathy, R. Maheswaran, P. Sethupathi, P. Vanitha, et al., Electrospinning of curcumin loaded chitosan/poly (lactic acid) nanofilm and evaluation of its medicinal characteristics, Front. Mater. Sci. 7 (2013) 350–361. https://doi.org/10.1007/s11706-013-0222-8.
[212] H.T. Bui, O.H. Chung, J. Dela Cruz, J.S. Park, Fabrication and characterization of electrospun curcumin-loaded polycaprolactone-polyethylene glycol nanofibers for enhanced wound healing, Macromol. Res. 22 (2014) 1288–1296. https://doi.org/10.1007/s13233-014-2179-6.
[213] S.Z. Fu, X.H. Meng, J. Fan, L.L. Yang, Q.L. Wen, et al., Acceleration of dermal wound healing by using electrospun curcumin‐loaded poly(ε‐caprolactone)‐poly(ethylene glycol)‐poly(ε‐caprolactone) fibrous mats, J. Biomed. Mater. Res. B: Appl. Biomater. 102 (2014) 533–542. https://doi.org/10.1002/jbm.b.33032.
[214] G. Yakub, A. Toncheva, N. Manolova, I. Rashkov, V. Kussovski, D. Danchev, Curcumin-loaded poly(l-lactide-co-D,l-lactide) electrospun fibers: Preparation and antioxidant, anticoagulant, and antibacterial properties, J. Bioact. Compat. Polym. 29 (2014) 607–627. https://doi.org/10.1177/0883911514553508.
[215] Y. Lian, J.-C. Zhan, K.-H. Zhang, X.-M. Mo, Fabrication and characterization of curcumin-loaded silk fibroin/P(LLA-CL) nanofibrous scaffold, Front. Mater. Sci. 8 (2014) 354–362. https://doi.org/10.1007/s11706-014-0270-8.
[216] M. Ranjbar-Mohammadi, S.H. Bahrami, Electrospun curcumin loaded poly(ε-caprolactone)/gum tragacanth nanofibers for biomedical application, Int. J. Biol. Macromol. 84 (2016) 448–456. https://doi.org/10.1016/j.ijbiomac.2015.12.024.
[217] M. Ranjbar-Mohammadi, S. Rabbani, S.H. Bahrami, M.T. Joghataei, F. Moayer, Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers, Mater. Sci. Eng: C. 69 (2016) 1183–1191. https://doi.org/10.1016/j.msec.2016.08.032.
[218] M. Ranjbar-Mohammadi, S. Kargozar, S.H. Bahrami, M.T. Joghataei, Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters, J. Ind. Text. 46 (2017) 1170–1192. https://doi.org/10.1177/1528083715613631.
[219] M. Fallah, S.H. Bahrami, M. Ranjbar-Mohammadi, Fabrication and characterization of PCL/gelatin/curcumin nanofibers and their antibacterial properties, J. Ind. Text. 46 (2016) 562–577. https://doi.org/10.1177/1528083715594978.
[220] N. Ramalingam, T.S. Natarajan, S. Rajiv, Preparation and characterization of electrospun curcumin loaded poly(2-hydroxyethyl methacrylate) nanofiber-A biomaterial for multidrug resistant organisms, J. Biomed. Mater. Res. A. 103 (2015) 16–24. https://doi.org/10.1002/jbm.a.35138.
[221] G. Yakub, A. Toncheva, N. Manolova, I. Rashkov, D. Danchev, V. Kussovski, Electrospun polylactide‐based materials for curcumin release: Photostability, antimicrobial activity, and anticoagulant effect, J. Appl. Polym. Sci. 133 (2016) 1–11. https://doi.org/10.1002/app.42940.
[222] G. Perumal, S. Pappuru, D. Chakraborty, A. Maya Nandkumar, D.K. Chand, M. Doble, Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications, Mater. Sci. Eng: C. 76 (2017) 1196–1204. https://doi.org/10.1016/j.msec.2017.03.200.
[223] P.B. Tsekova, M.G. Spasova, N.E. Manolova, N.D. Markova, I.B. Rashkov, Electrospun curcumin-loaded cellulose acetate/polyvinylpyrrolidone fibrous materials with complex architecture and antibacterial activity, Mater. Sci. Eng: C. 73 (2017) 206–214. https://doi.org/10.1016/j.msec.2016.12.086.
[224] Z. Aytac, T. Uyar, Core-shell nanofibers of curcumin/cyclodextrin inclusion complex and polylactic acid: Enhanced water solubility and slow release of curcumin, Int. J. Pharm. 518 (2017) 177–184. https://doi.org/10.1016/j.ijpharm.2016.12.061.
[225] R. Ravikumar, M. Ganesh, U. Ubaidulla, E. Young Choi, H. Tae Jang, Preparation, characterization, and in vitro diffusion study of nonwoven electrospun nanofiber of curcumin-loaded cellulose acetate phthalate polymer, Saudi Pharm. J. 25 (2017) 921–926. https://doi.org/10.1016/j.jsps.2017.02.004.
[226] L. Moradkhannejhad, M. Abdouss, N. Nikfarjam, S. Mazinani, P. Sayar, Electrospun curcumin loaded poly(lactic acid) nanofiber mat on the flexible crosslinked PVA/PEG membrane film: Characterization and in vitro release kinetic study, Fibers Polym. 18 (2017) 2349–2360. https://doi.org/10.1007/s12221-017-7543-7.
[227] G. Mutlu, S. Calamak, K. Ulubayram, E. Guven, Curcumin-loaded electrospun PHBV nanofibers as potential wound-dressing material, J. Drug Deliv. Sci. Technol. 43 (2018) 185–193. https://doi.org/10.1016/j.jddst.2017.09.017.
[228] J. Fernández, M. Ruiz-Ruiz, J.-R. Sarasua, Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds, ACS Appl. Polym. Mater. 1 (2019) 1096–1106. https://doi.org/10.1021/acsapm.9b00108.
[229] P. Pankongadisak, S. Sangklin, P. Chuysinuan, O. Suwantong, P. Supaphol, The use of electrospun curcumin-loaded poly(L-lactic acid) fiber mats as wound dressing materials, J. Drug Deliv. Sci. Technol. 53 (2019) 101121. https://doi.org/10.1016/j.jddst.2019.06.018.
[230] P. Chuysinuan, P. Pavasant, P. Supaphol, Preparation and Characterization of Caffeic Acid-Grafted Electrospun Poly(l-Lactic Acid) Fiber Mats for Biomedical Applications, ACS Appl. Mater. Interfaces. 4 (2012) 3031–3040. https://doi.org/10.1021/am300404v.
[231] M. Ranjbar-Mohammadi, S.H. Bahrami, M.T. Joghataei, Fabrication of novel nanofiber scaffolds from gum tragacanth/poly(vinyl alcohol) for wound dressing application: In vitro evaluation and antibacterial properties, Mater. Sci. Eng: C. 33 (2013) 4935–4943. https://doi.org/10.1016/j.msec.2013.08.016.
[232] M. Ranjbar-Mohammadi, S.H. Bahrami, Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds, Mater. Sci. Eng: C. 48 (2015) 71–79. https://doi.org/10.1016/j.msec.2014.10.020.
[233] P. Zhu, X. Zhang, Y. Wang, C. Li, X. Wang, et al., Electrospun polylactic acid nanofiber membranes containing Capparis spinosa L. extracts for potential wound dressing applications, J. Appl. Polym. Sci. 138 (2021). https://doi.org/10.1002/app.50800.
[234] Y. Ghiyasi, E. Salahi, H. Esfahani, Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application, Mater. Today Commun. 26 (2021) 102163. https://doi.org/10.1016/j.mtcomm.2021.102163.
[235] S. Shanmugavel, V.J. Reddy, S. Ramakrishna, B.S. Lakshmi, V.R.G. Dev, Precipitation of hydroxyapatite on electrospun polycaprolactone/aloe vera/silk fibroin nanofibrous scaffolds for bone tissue engineering, J. Biomater. Appl. 29 (2014) 46–58. https://doi.org/10.1177/0885328213513934.
[236] P. Carter, S.M. Rahman, N. Bhattarai, Facile fabrication of aloe vera containing PCL nanofibers for barrier membrane application, J. Biomater. Sci. Polym. Ed. 27 (2016) 692–708. https://doi.org/10.1080/09205063.2016.1152857.
[237] M. Ranjbar-Mohammadi, Characteristics of aloe vera incorporated poly(ε-caprolactone)/gum tragacanth nanofibers as dressings for wound care, J. Ind. Text. 47 (2018) 1464–1477. https://doi.org/10.1177/1528083717692595.
[238] S. Baghersad, S. Hajir Bahrami, M.R. Mohammadi, M.R.M. Mojtahedi, P.B. Milan, Development of biodegradable electrospun gelatin/aloe-vera/poly(ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes, Mater. Sci. Eng: C. 93 (2018) 367–379. https://doi.org/10.1016/j.msec.2018.08.020.
[239] M. Shabannejad, M.S. Nourbakhsh, A. Salati, Z. Bahrami, Fabrication and Characterization of Electrospun Scaffold Based on Polycaprolactone-Aloe vera and Polyvinyl Alcohol for Skin Tissue Engineering, Fibers Polym. 21 (2020) 1694–1703. https://doi.org/10.1007/s12221-020-9922-8.
[240] A. Tahmasebi, A. Shapouri Moghadam, S.E. Enderami, M. Islami, M. Kaabi, et al., Aloe Vera–Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering, ASAIO J. 66 (2020) 966–973. https://doi.org/10.1097/MAT.0000000000001094.
[241] P. Karuppuswamy, J.R. Venugopal, B. Navaneethan, A.L. Laiva, S. Sridhar, S. Ramakrishna, Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications, Appl. Surf. Sci. 322 (2014) 162–168. https://doi.org/10.1016/j.apsusc.2014.10.074.
[242] Z. Thompson, S. Rahman, S. Yarmolenko, J. Sankar, D. Kumar, N. Bhattarai, Fabrication and Characterization of Magnesium Ferrite-Based PCL/Aloe Vera Nanofibers, Materials. 10 (2017) 937. https://doi.org/10.3390/ma10080937.
[243] S.K. Jaganathan, M.P. Mani, G. Nageswaran, N.P. Krishnasamy, M. Ayyar, Single stage electrospun multicomponent scaffold for bone tissue engineering application, Polym. Test. 70 (2018) 244–254. https://doi.org/10.1016/j.polymertesting.2018.07.015.
[244] S.K. Jaganathan, M.P. Mani, S.K. Palaniappan, R. Rathanasamy, Fabrication and characterisation of nanofibrous polyurethane scaffold incorporated with corn and neem oil using single stage electrospinning technique for bone tissue engineering applications, J. Polym. Res. 25 (2018) 146. https://doi.org/10.1007/s10965-018-1543-1.
[245] K. Bachimam, E. Emul, N. Saglam, F. Korkusuz, Baicalein Nanofiber Scaffold Containing Hyaluronic Acid and Polyvinyl Alcohol: Preparation and Evaluation, Turk. J. Med. Sci. 50 (2020) 1139–1146. https://doi.org/10.3906/sag-2001-123.
[246] J. Huang, X. Zhou, Y. Shen, H. Li, G. Zhou, et al., Asiaticoside loading into polylactic‐co‐glycolic acid electrospun nanofibers attenuates host inflammatory response and promotes M2 macrophage polarization, J. Biomed. Mater. Res. A. 108 (2020) 69–80. https://doi.org/10.1002/jbm.a.36793.
[247] K. Nejati, D. Mehdi, S. Ghareghomi, E. Mostafavi, A. Ebrahimi-Kalan, et al., GDNF gene-engineered adipose-derived stem cells seeded Emu oil-loaded electrospun nanofibers for axonal regeneration following spinal cord injury, J. Drug Deliv. Sci. Technol. 60 (2020) 102095. https://doi.org/10.1016/j.jddst.2020.102095.
[248] M. Khakestani, S.H. Jafari, P. Zahedi, R. Bagheri, R. Hajiaghaee, Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing Equisetum arvense herbal extract for bone tissue engineering, J. Appl. Polym. Sci. 134 (2017) 45343. https://doi.org/10.1002/app.45343.
[249] Z. Pedram Rad, J. Mokhtari, M. Abbasi, Calendula officinalis extract/PCL/Zein/Gum arabic nanofibrous bio-composite scaffolds via suspension, two-nozzle and multilayer electrospinning for skin tissue engineering, Int. J. Biol. Macromol. 135 (2019) 530–543. https://doi.org/10.1016/j.ijbiomac.2019.05.204.
[250] H. Hosseinkazemi, E. Biazar, S. Bonakdar, M.-T. Ebadi, M.-A. Shokrgozar, M. Rabiee, Modification of PCL Electrospun Nanofibrous Mat With Calendula officinalis Extract for Improved Interaction With Cells, Int. J. Polym. Mater. Polym. Biomater. 64 (2015) 459–464. https://doi.org/10.1080/00914037.2014.958835.
[251] S. Zadegan, J. Nourmohammadi, B. Vahidi, N. Haghighipour, An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers, Int. J. Biol. Macromol. 133 (2019) 795–803. https://doi.org/10.1016/j.ijbiomac.2019.04.165.
[252] M. Dadras Chomachayi, A. Solouk, S. Akbari, D. Sadeghi, F. Mirahmadi, H. Mirzadeh, Electrospun nanofibers comprising of silk fibroin/gelatin for drug delivery applications: Thyme essential oil and doxycycline monohydrate release study, J. Biomed. Mater. Res. A. 106 (2018) 1092–1103. https://doi.org/10.1002/jbm.a.36303.
[253] S. Jain, S.R. Krishna Meka, K. Chatterjee, Curcumin eluting nanofibers augment osteogenesis toward phytochemical based bone tissue engineering, Biomed. Mater. 11 (2016) 055007. https://doi.org/10.1088/1748-6041/11/5/055007.
[254] P.-A. Mouthuy, M. Somogyi Škoc, A. Čipak Gašparović, L. Milković, A.J. Carr, N. Žarković, Investigating the use of curcumin-loaded electrospun filaments for soft tissue repair applications, Int. J. Nanomed. 12 (2017) 3977–3991. https://doi.org/10.2147/IJN.S133326.
[255] A. Kurniawan, F. Gunawan, A.T. Nugraha, S. Ismadji, M.-J. Wang, Biocompatibility and drug release behavior of curcumin conjugated gold nanoparticles from aminosilane-functionalized electrospun poly( N -vinyl-2-pyrrolidone) fibers, Int. J. Pharm. 516 (2017) 158–169. https://doi.org/10.1016/j.ijpharm.2016.10.067.
[256] M. Zahiri, M. Khanmohammadi, A. Goodarzi, S. Ababzadeh, M. Sagharjoghi Farahani, et al., Encapsulation of curcumin loaded chitosan nanoparticle within poly (ε-caprolactone) and gelatin fiber mat for wound healing and layered dermal reconstitution, Int. J. Biol. Macromol. 153 (2020) 1241–1250. https://doi.org/10.1016/j.ijbiomac.2019.10.255.
[257] S. Amiri, A. Rahimi, Poly(ε-caprolactone) electrospun nanofibers containing curcumin nanocontainers: enhanced solubility, dissolution and physical stability of curcumin via formation of inclusion complex with cyclodextrins, Int. J. Polym. Mater. Polym. Biomater. 68 (2019) 669–679. https://doi.org/10.1080/00914037.2018.1482467.
[258] M. Ranjbar-Mohammadi, M.P. Prabhakaran, S.H. Bahrami, S. Ramakrishna, Gum tragacanth/poly( l -lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage, Carbohydr. Polym. 140 (2016) 104–112. https://doi.org/10.1016/j.carbpol.2015.12.012.
[259] M. Ranjbar-Mohammadi, M. Zamani, M.P. Prabhakaran, S.H. Bahrami, S. Ramakrishna, Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration, Mater. Sci. Eng: C. 58 (2016) 521–531. https://doi.org/10.1016/j.msec.2015.08.066.
[260] Z. Zarekhalili, S.H. Bahrami, M. Ranjbar-Mohammadi, P.B. Milan, Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes, Int. J. Biol. Macromol. 94 (2017) 679–690. https://doi.org/10.1016/j.ijbiomac.2016.10.042.
[261] Z. Pedram Rad, J. Mokhtari, M. Abbasi, Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering, Mater. Sci. Eng: C. 93 (2018) 356–366. https://doi.org/10.1016/j.msec.2018.08.010.
[262] S. Ghalei, J. Li, M. Douglass, M. Garren, H. Handa, Synergistic Approach to Develop Antibacterial Electrospun Scaffolds Using Honey and S-Nitroso-N-acetyl Penicillamine, ACS Biomater. Sci. Eng. 7 (2021) 517–526. https://doi.org/10.1021/acsbiomaterials.0c01411.
[263] S. Torres-Giner, S. Wilkanowicz, B. Melendez-Rodriguez, J.M. Lagaron, Nanoencapsulation of Aloe vera in Synthetic and Naturally Occurring Polymers by Electrohydrodynamic Processing of Interest in Food Technology and Bioactive Packaging, J. Agric. Food Chem. 65 (2017) 4439–4448. https://doi.org/10.1021/acs.jafc.7b01393.
[264] I. Solaberrieta, A. Jiménez, I. Cacciotti, M.C. Garrigós, Encapsulation of Bioactive Compounds from Aloe Vera Agrowastes in Electrospun Poly (Ethylene Oxide) Nanofibers, Polymers. 12 (2020) 1323. https://doi.org/10.3390/polym12061323.
[265] M. Aceituno-Medina, A. Lopez-Rubio, S. Mendoza, J.M. Lagaron, Development of novel ultrathin structures based in amaranth (Amaranthus hypochondriacus) protein isolate through electrospinning, Food Hydrocoll. 31 (2013) 289–298. https://doi.org/10.1016/j.foodhyd.2012.11.009.
[266] M. Aceituno-Medina, S. Mendoza, J.M. Lagaron, A. López-Rubio, Development and characterization of food-grade electrospun fibers from amaranth protein and pullulan blends, Food Res. Int. 54 (2013) 667–674. https://doi.org/10.1016/j.foodres.2013.07.055.
[267] K.M. Soto, M. Hernández-Iturriaga, G. Loarca-Piña, G. Luna-Bárcenas, C.A. Gómez-Aldapa, S. Mendoza, Stable nisin food-grade electrospun fibers, J. Food Sci. Technol. 53 (2016) 3787–3794. https://doi.org/10.1007/s13197-016-2365-y.
[268] K.M. Soto, M. Hernández-Iturriaga, G. Loarca-Piña, G. Luna-Bárcenas, S. Mendoza, Antimicrobial effect of nisin electrospun amaranth: pullulan nanofibers in apple juice and fresh cheese, Int. J. Food Microbiol. 295 (2019) 25–32. https://doi.org/10.1016/j.ijfoodmicro.2019.02.001.
[269] S.Z. Hoseyni, S.M. Jafari, H. Shahiri Tabarestani, M. Ghorbani, E. Assadpour, M. Sabaghi, Release of catechin from Azivash gum-polyvinyl alcohol electrospun nanofibers in simulated food and digestion media, Food Hydrocoll. 112 (2021) 106366. https://doi.org/10.1016/j.foodhyd.2020.106366.
[270] S.Z. Hoseyni, S.M. Jafari, H. Shahiri Tabarestani, M. Ghorbani, E. Assadpour, M. Sabaghi, Production and characterization of catechin-loaded electrospun nanofibers from Azivash gum- polyvinyl alcohol, Carbohydr. Polym. 235 (2020) 115979. https://doi.org/10.1016/j.carbpol.2020.115979.
[271] M.P. Arrieta, J. López, D. López, J.M. Kenny, L. Peponi, Effect of chitosan and catechin addition on the structural, thermal, mechanical and disintegration properties of plasticized electrospun PLA-PHB biocomposites, Polym. Degrad. Stab. 132 (2016) 145–156. https://doi.org/10.1016/j.polymdegradstab.2016.02.027.
[272] M.P. Arrieta, A. Díez García, D. López, S. Fiori, L. Peponi, Antioxidant Bilayers Based on PHBV and Plasticized Electrospun PLA-PHB Fibers Encapsulating Catechin, Nanomaterials. 9 (2019) 346. https://doi.org/10.3390/nano9030346.
[273] K. Figueroa-Lopez, J. Castro-Mayorga, M. Andrade-Mahecha, L. Cabedo, J. Lagaron, Antibacterial and Barrier Properties of Gelatin Coated by Electrospun Polycaprolactone Ultrathin Fibers Containing Black Pepper Oleoresin of Interest in Active Food Biopackaging Applications, Nanomaterials. 8 (2018) 199. https://doi.org/10.3390/nano8040199.
[274] H. Cui, M. Bai, M.M.A. Rashed, L. Lin, The antibacterial activity of clove oil/chitosan nanoparticles embedded gelatin nanofibers against Escherichia coli O157:H7 biofilms on cucumber, Int. J. Food Microbiol. 266 (2018) 69–78. https://doi.org/10.1016/j.ijfoodmicro.2017.11.019.
[275] A. Fahami, M. Fathi, Fabrication and characterization of novel nanofibers from cress seed mucilage for food applications, J. Appl. Polym. Sci. 135 (2018) 4–9. https://doi.org/10.1002/app.45811.
[276] A. Fahami, M. Fathi, Development of cress seed mucilage/PVA nanofibers as a novel carrier for vitamin A delivery, Food Hydrocoll. 81 (2018) 31–38. https://doi.org/10.1016/j.foodhyd.2018.02.008.
[277] F. Kurd, M. Fathi, H. Shekarchizadeh, Nanoencapsulation of hesperetin using basil seed mucilage nanofibers: Characterization and release modeling, Food Biosci. 32 (2019) 100475. https://doi.org/10.1016/j.fbio.2019.100475.
[278] N. Karami, A. Kamkar, Y. Shahbazi, A. Misaghi, Electrospinning of double-layer chitosan-flaxseed mucilage nanofibers for sustained release of Ziziphora clinopodioides essential oil and sesame oil, LWT. 140 (2021) 110812. https://doi.org/10.1016/j.lwt.2020.110812.
[279] S. Hadad, S.A.H. Goli, Improving Oxidative Stability of Flaxseed Oil by Encapsulation in Electrospun Flaxseed Mucilage Nanofiber, Food Bioprocess Technol. 12 (2019) 829–838. https://doi.org/10.1007/s11947-019-02259-1.
[280] P. Golkar, S. Kalani, A.R. Allafchian, H. Mohammadi, S.A.H. Jalali, Fabrication and characterization of electrospun Plantago major seed mucilage/PVA nanofibers, J. Appl. Polym. Sci. 136 (2019) 1–10. https://doi.org/10.1002/app.47852.
[281] I. Sriyanti, D. Edikresnha, A. Rahma, M.M. Munir, H. Rachmawati, K. Khairurrijal, Correlation between Structures and Antioxidant Activities of Polyvinylpyrrolidone/Garcinia mangostana L. Extract Composite Nanofiber Mats Prepared Using Electrospinning, J. Nanomater. 2017 (2017) 1–10. https://doi.org/10.1155/2017/9687896.
[282] N.M. Hani, A.E. Torkamani, M.H. Azarian, K.W.A. Mahmood, S.H. Ngalim, Characterisation of electrospun gelatine nanofibres encapsulated with Moringa oleifera bioactive extract, J. Sci. Food Agric. 97 (2017) 3348–3358. https://doi.org/10.1002/jsfa.8185.
[283] L. Lin, Y. Gu, H. Cui, Moringa oil/chitosan nanoparticles embedded gelatin nanofibers for food packaging against Listeria monocytogenes and Staphylococcus aureus on cheese, Food Packag. Shelf Life. 19 (2019) 86–93. https://doi.org/10.1016/j.fpsl.2018.12.005.
[284] T.G. Kebede, S. Dube, M.M. Nindi, Fabrication and characterization of electrospun nanofibers from Moringa stenopetala seed protein, Mater. Res. Express. 5 (2018) 125015. https://doi.org/10.1088/2053-1591/aae04c.
[285] Z.C. Yao, S.C. Chen, Z. Ahmad, J. Huang, M.W. Chang, J.S. Li, Essential Oil Bioactive Fibrous Membranes Prepared via Coaxial Electrospinning, J. Food Sci. 82 (2017) 1412–1422. https://doi.org/10.1111/1750-3841.13723.
[286] E. Tavassoli-Kafrani, S.A.H. Goli, M. Fathi, Encapsulation of Orange Essential Oil Using Cross-linked Electrospun Gelatin Nanofibers, Food Bioprocess Technol. 11 (2018) 427–434. https://doi.org/10.1007/s11947-017-2026-9.
[287] M. Raeisi, M.A. Mohammadi, O.E. Coban, S. Ramezani, M. Ghorbani, et al., Physicochemical and antibacterial effect of Soy Protein Isolate/Gelatin electrospun nanofibres incorporated with Zataria multiflora and Cinnamon zeylanicum essential oils, J. Food Meas. Charact. 15 (2021) 1116–1126. https://doi.org/10.1007/s11694-020-00700-0.
[288] L.M. Fonseca, J.P. de Oliveira, R.L. Crizel, F.T. da Silva, E. da Rosa Zavareze, C.D. Borges, Electrospun Starch Fibers Loaded with Pinhão (Araucaria angustifolia) Coat Extract Rich in Phenolic Compounds, Food Biophys. 15 (2020) 355–367. https://doi.org/10.1007/s11483-020-09629-9.
[289] D. Surendhiran, C. Li, H. Cui, L. Lin, Fabrication of high stability active nanofibers encapsulated with pomegranate peel extract using chitosan/PEO for meat preservation, Food Packag. Shelf Life. 23 (2020) 100439. https://doi.org/10.1016/j.fpsl.2019.100439.
[290] L. He, W. Lan, S. Ahmed, W. Qin, Y. Liu, Electrospun polyvinyl alcohol film containing pomegranate peel extract and sodium dehydroacetate for use as food packaging, Food Packag. Shelf Life. 22 (2019) 100390. https://doi.org/10.1016/j.fpsl.2019.100390.
[291] S. Saadat, Z. Emam-Djomeh, G. Askari, Antibacterial and Antioxidant Gelatin Nanofiber Scaffold Containing Ethanol Extract of Pomegranate Peel: Design, Characterization and In Vitro Assay, Food Bioprocess Technol. 14 (2021) 935–944. https://doi.org/10.1007/s11947-021-02616-z.
[292] S. Wang, M.F. Marcone, S. Barbut, L.-T. Lim, Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts, Food Res. Int. 52 (2013) 467–472. https://doi.org/10.1016/j.foodres.2012.12.036.
[293] Z.-C. Yao, M.-W. Chang, Z. Ahmad, J.-S. Li, Encapsulation of rose hip seed oil into fibrous zein films for ambient and on demand food preservation via coaxial electrospinning, J. Food Eng. 191 (2016) 115–123. https://doi.org/10.1016/j.jfoodeng.2016.07.012.
[294] M.A. Dehcheshmeh, M. Fathi, Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract, Int. J. Biol. Macromol. 122 (2019) 272–279. https://doi.org/10.1016/j.ijbiomac.2018.10.176.
[295] H. Cui, M. Bai, L. Lin, Plasma-treated poly(ethylene oxide) nanofibers containing tea tree oil/beta-cyclodextrin inclusion complex for antibacterial packaging, Carbohydr. Polym. 179 (2018) 360–369. https://doi.org/10.1016/j.carbpol.2017.10.011.
[296] H. Cui, M. Bai, C. Li, R. Liu, L. Lin, Fabrication of chitosan nanofibers containing tea tree oil liposomes against Salmonella spp. in chicken, LWT. 96 (2018) 671–678. https://doi.org/10.1016/j.lwt.2018.06.026.
[297] J.Y. Lee, J. Lee, S.W. Ko, B.C. Son, J.H. Lee, et al., Fabrication of Antibacterial Nanofibrous Membrane Infused with Essential Oil Extracted from Tea Tree for Packaging Applications, Polymers. 12 (2020) 125. https://doi.org/10.3390/polym12010125.
[298] H. Cui, C. Zhang, C. Li, L. Lin, Preparation and antibacterial activity of Litsea cubeba essential oil/dandelion polysaccharide nanofiber, Ind. Crops Prod. 140 (2019) 111739. https://doi.org/10.1016/j.indcrop.2019.111739.
[299] E. Alp Erbay, B.B. Dağtekin, M. Türe, A.F. Yeşilsu, S. Torres-Giner, Quality improvement of rainbow trout fillets by whey protein isolate coatings containing electrospun poly(ε-caprolactone) nanofibers with Urtica dioica L. extract during storage, LWT. 78 (2017) 340–351. https://doi.org/10.1016/j.lwt.2017.01.002.
[300] L. Lin, Y. Zhu, H. Cui, Electrospun thyme essential oil/gelatin nanofibers for active packaging against Campylobacter jejuni in chicken, LWT. 97 (2018) 711–718. https://doi.org/10.1016/j.lwt.2018.08.015.
[301] L. Lin, X. Liao, H. Cui, Cold plasma treated thyme essential oil/silk fibroin nanofibers against Salmonella Typhimurium in poultry meat, Food Packag. Shelf Life. 21 (2019) 100337. https://doi.org/10.1016/j.fpsl.2019.100337.
[302] B. Vafania, M. Fathi, S. Soleimanian-Zad, Nanoencapsulation of thyme essential oil in chitosan-gelatin nanofibers by nozzle-less electrospinning and their application to reduce nitrite in sausages, Food Bioprod. Process. 116 (2019) 240–248. https://doi.org/10.1016/j.fbp.2019.06.001.
[303] T. Min, X. Sun, Z. Yuan, L. Zhou, X. Jiao, et al., Novel antimicrobial packaging film based on porous poly(lactic acid) nanofiber and polymeric coating for humidity-controlled release of thyme essential oil, LWT. 135 (2021) 110034. https://doi.org/10.1016/j.lwt.2020.110034.
[304] L.M. Fonseca, M. Radünz, H.C. dos Santos Hackbart, F.T. da Silva, T.M. Camargo, et al., Electrospun potato starch nanofibers for thyme essential oil encapsulation: antioxidant activity and thermal resistance, J. Sci. Food Agric. 100 (2020) 4263–4271. https://doi.org/10.1002/jsfa.10468.
[305] L. Yavari Maroufi, M. Ghorbani, M. Mohammadi, A. Pezeshki, Improvement of the physico-mechanical properties of antibacterial electrospun poly lactic acid nanofibers by incorporation of guar gum and thyme essential oil, Colloids Surf. A: Physicochem. Eng. Asp. 622 (2021) 126659. https://doi.org/10.1016/j.colsurfa.2021.126659.
[306] F. Kayaci, T. Uyar, Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: Prolonged shelf-life and high temperature stability of vanillin, Food Chem. 133 (2012) 641–649. https://doi.org/10.1016/j.foodchem.2012.01.040.
[307] A. Celebioglu, F. Kayaci-Senirmak, S. İpek, E. Durgun, T. Uyar, Polymer-free nanofibers from vanillin/cyclodextrin inclusion complexes: high thermal stability, enhanced solubility and antioxidant property, Food Funct. 7 (2016) 3141–3153. https://doi.org/10.1039/C6FO00569A.
[308] A. Rezaei, A. Nasirpour, H. Tavanai, M. Fathi, A study on the release kinetics and mechanisms of vanillin incorporated in almond gum/polyvinyl alcohol composite nanofibers in different aqueous food simulants and simulated saliva, Flavour Fragr. J. 31 (2016) 442–447. https://doi.org/10.1002/ffj.3335.
[309] A. Rezaei, H. Tavanai, A. Nasirpour, Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin, Int. J. Biol. Macromol. 91 (2016) 536–543. https://doi.org/10.1016/j.ijbiomac.2016.06.005.
[310] S. Lević, N. Obradović, V. Pavlović, B. Isailović, I. Kostić, et al., Thermal, morphological, and mechanical properties of ethyl vanillin immobilized in polyvinyl alcohol by electrospinning process, J. Therm. Anal. Calorim. 118 (2014) 661–668. https://doi.org/10.1007/s10973-014-4060-4.
[311] K. Munhuweyi, O.J. Caleb, A.J. van Reenen, U.L. Opara, Physical and antifungal properties of β-cyclodextrin microcapsules and nanofibre films containing cinnamon and oregano essential oils, LWT. 87 (2018) 413–422. https://doi.org/10.1016/j.lwt.2017.09.012.
[312] P. Wen, D.-H. Zhu, K. Feng, F.-J. Liu, W.-Y. Lou, et al., Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/ β -cyclodextrin inclusion complex for antimicrobial packaging, Food Chem. 196 (2016) 996–1004. https://doi.org/10.1016/j.foodchem.2015.10.043.
[313] K. Feng, P. Wen, H. Yang, N. Li, W.Y. Lou, et al., Enhancement of the antimicrobial activity of cinnamon essential oil-loaded electrospun nanofilm by the incorporation of lysozyme, RSC Adv. 7 (2017) 1572–1580. https://doi.org/10.1039/C6RA25977D.
[314] P. Wen, D.-H. Zhu, H. Wu, M.-H. Zong, Y.-R. Jing, S.-Y. Han, Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging, Food Control. 59 (2016) 366–376. https://doi.org/10.1016/j.foodcont.2015.06.005.
[315] Y. Liu, S. Wang, R. Zhang, W. Lan, W. Qin, Development of Poly(lactic acid)/Chitosan Fibers Loaded with Essential Oil for Antimicrobial Applications, Nanomaterials. 7 (2017) 194. https://doi.org/10.3390/nano7070194.
[316] L. Lin, Y. Dai, H. Cui, Antibacterial poly(ethylene oxide) electrospun nanofibers containing cinnamon essential oil/beta-cyclodextrin proteoliposomes, Carbohydr. Polym. 178 (2017) 131–140. https://doi.org/10.1016/j.carbpol.2017.09.043.
[317] S. Amiri, A. Rahimi, Poly(ε-caprolactone) electrospun nanofibers containing cinnamon essential oil nanocapsules: A promising technique for controlled release and high solubility, J. Ind. Text. 48 (2019) 1527–1544. https://doi.org/10.1177/1528083718764911.
[318] M. Nazari, H. Majdi, M. Milani, S. Abbaspour-Ravasjani, H. Hamishehkar, L.-T. Lim, Cinnamon nanophytosomes embedded electrospun nanofiber: Its effects on microbial quality and shelf-life of shrimp as a novel packaging, Food Packag. Shelf Life. 21 (2019) 100349. https://doi.org/10.1016/j.fpsl.2019.100349.
[319] A. Blanco-Padilla, A. López-Rubio, G. Loarca-Piña, L.G. Gómez-Mascaraque, S. Mendoza, Characterization, release and antioxidant activity of curcumin-loaded amaranth-pullulan electrospun fibers, LWT - Food Sci. Technol. 63 (2015) 1137–1144. https://doi.org/10.1016/j.lwt.2015.03.081.
[320] H. Wang, L. Hao, P. Wang, M. Chen, S. Jiang, S. Jiang, Release kinetics and antibacterial activity of curcumin loaded zein fibers, Food Hydrocoll. 63 (2017) 437–446. https://doi.org/10.1016/j.foodhyd.2016.09.028.
[321] L. Wang, R.-J. Mu, Y. Li, L. Lin, Z. Lin, J. Pang, Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films, LWT. 113 (2019) 108293. https://doi.org/10.1016/j.lwt.2019.108293.
[322] P.K. Akman, F. Bozkurt, M. Balubaid, M.T. Yilmaz, Fabrication of Curcumin-loaded Gliadin Electrospun Nanofibrous Structures and Bioactive Properties, Fibers Polym. 20 (2019) 1187–1199. https://doi.org/10.1007/s12221-019-8950-8.
[323] A. Celebioglu, T. Uyar, Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs, Food Chem. 317 (2020) 126397. https://doi.org/10.1016/j.foodchem.2020.126397.
[324] S. Wongsasulak, M. Patapeejumruswong, J. Weiss, P. Supaphol, T. Yoovidhya, Electrospinning of food-grade nanofibers from cellulose acetate and egg albumen blends, J. Food Eng. 98 (2010) 370–376. https://doi.org/10.1016/j.jfoodeng.2010.01.014.
[325] K. Moomand, L.-T. Lim, Oxidative stability of encapsulated fish oil in electrospun zein fibres, Food Res. Int. 62 (2014) 523–532. https://doi.org/10.1016/j.foodres.2014.03.054.
[326] P.J. García-Moreno, K. Stephansen, J. van der Kruijs, A. Guadix, E.M. Guadix, et al., Encapsulation of fish oil in nanofibers by emulsion electrospinning: Physical characterization and oxidative stability, J. Food Eng. 183 (2016) 39–49. https://doi.org/10.1016/j.jfoodeng.2016.03.015.
[327] H. Yang, P. Wen, K. Feng, M.H. Zong, W.Y. Lou, H. Wu, Encapsulation of fish oil in a coaxial electrospun nanofibrous mat and its properties, RSC Adv. 7 (2017) 14939–14946. https://doi.org/10.1039/C7RA00051K.
[328] H. Yang, K. Feng, P. Wen, M.-H. Zong, W.-Y. Lou, H. Wu, Enhancing oxidative stability of encapsulated fish oil by incorporation of ferulic acid into electrospun zein mat, LWT. 84 (2017) 82–90. https://doi.org/10.1016/j.lwt.2017.05.045.
[329] L. Liu, L. Tao, J. Chen, T. Zhang, J. Xu, et al., Fish oil-gelatin core-shell electrospun nanofibrous membranes as promising edible films for the encapsulation of hydrophobic and hydrophilic nutrients, LWT. 146 (2021) 111500. https://doi.org/10.1016/j.lwt.2021.111500.
[330] K.J. Figueroa-Lopez, A.A. Vicente, M.A.M. Reis, S. Torres-Giner, J.M. Lagaron, Antimicrobial and Antioxidant Performance of Various Essential Oils and Natural Extracts and Their Incorporation into Biowaste Derived Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Layers Made from Electrospun Ultrathin Fibers, Nanomaterials. 9 (2019) 144. https://doi.org/10.3390/nano9020144.
[331] G. Aslaner, G. Sumnu, S. Sahin, Encapsulation of Grape Seed Extract in Rye Flour and Whey Protein–Based Electrospun Nanofibers, Food Bioprocess Technol. 14 (2021) 1118–1131. https://doi.org/10.1007/s11947-021-02627-w.
[332] Z. Ceylan, N. Kutlu, R. Meral, M.M. Ekin, Y.E. Kose, Protective effect of grape seed oil-loaded nanofibers: Limitation of microbial growth and lipid oxidation in kashar cheese and fish meat samples, Food Biosci. 42 (2021) 101076. https://doi.org/10.1016/j.fbio.2021.101076.
[333] H. Khanzada, A. Salam, M.B. Qadir, D.-N. Phan, T. Hassan, et al., Fabrication of Promising Antimicrobial Aloe Vera/PVA Electrospun Nanofibers for Protective Clothing, Materials. 13 (2020) 3884. https://doi.org/10.3390/ma13173884.
[334] R. Nirmala, D. Kalpana, J.W. Jeong, H.J. Oh, J.-H. Lee, et al., Multifunctional baicalein blended poly(vinyl alcohol) composite nanofibers via electrospinning, Colloids Surf. A: Physicochem. Eng. Asp. 384 (2011) 605–611. https://doi.org/10.1016/j.colsurfa.2011.05.009.
[335] J. Kim, S. Kim, Eco-Friendly Acaricidal Effects of Nylon 66 Nanofibers via Grafted Clove Bud Oil-Loaded Capsules on House Dust Mites, Nanomaterials. 7 (2017) 179. https://doi.org/10.3390/nano7070179.
[336] P. Chuysinuan, S. Techasakul, S. Suksamrarn, N. Wetprasit, P. Hongmanee, P. Supaphol, Preparation and characterization of electrospun polyacrylonitrile fiber mats containing Garcinia mangostana, Polym. Bull. 75 (2018) 1311–1327. https://doi.org/10.1007/s00289-017-2087-y.
[337] M.D. Berechet, C. Gaidau, A. Miletic, B. Pilic, M. Râpă, et al., Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils, Materials. 13 (2020) 1618. https://doi.org/10.3390/ma13071618.
[338] Y. Ge, J. Tang, H. Fu, Y. Fu, Y. Wu, Characteristics, Controlled-release and Antimicrobial Properties of Tea Tree Oil Liposomes-incorporated Chitosan-based Electrospun Nanofiber Mats, Fibers Polym. 20 (2019) 698–708. https://doi.org/10.1007/s12221-019-1092-1.
[339] N. Kamrudi, S. Akbari, M. Haghighat Kish, Enhanced control release of thyme essential oils from electrospun nanofiber/polyamidoamine dendritic polymer for antibacterial platforms, Polym. Adv. Technol. 31 (2020) 1719–1731. https://doi.org/10.1002/pat.4899.
[340] N. Kamrudi, S. Akbari, M. Haghighat Kish, The odour assessment of thyme essential oils in electrospun fibre mat with a virtual sensor array data and its relation to antibacterial activity, J. Microencapsul. 37 (2020) 144–159. https://doi.org/10.1080/02652048.2020.1713241.
[341] Y. Jung, H. Yang, I.-Y. Lee, T.-S. Yong, S. Lee, Core/Sheath-Structured Composite Nanofibers Containing Cinnamon Oil: Their Antibacterial and Antifungal Properties and Acaricidal Effect against House Dust Mites, Polymers. 12 (2020) 243. https://doi.org/10.3390/polym12010243.
[342] A. Saithongdee, N. Praphairaksit, A. Imyim, Electrospun curcumin-loaded zein membrane for iron(III) ions sensing, Sens. Actuators B: Chem. 202 (2014) 935–940. https://doi.org/10.1016/j.snb.2014.06.036.
[343] S. Nam, J.-J. Lee, S.Y. Lee, J.Y. Jeong, W.-S. Kang, H.-J. Cho, Angelica gigas Nakai extract-loaded fast-dissolving nanofiber based on poly(vinyl alcohol) and Soluplus for oral cancer therapy, Int. J. Pharm. 526 (2017) 225–234. https://doi.org/10.1016/j.ijpharm.2017.05.004.
[344] S. Rasouli, M. Montazeri, S. Mashayekhi, S. Sadeghi-Soureh, M. Dadashpour, H. Mousazadeh, et al., Synergistic anticancer effects of electrospun nanofiber-mediated codelivery of Curcumin and Chrysin: Possible application in prevention of breast cancer local recurrence, J. Drug Deliv. Sci. Technol. 55 (2020) 101402. https://doi.org/10.1016/j.jddst.2019.101402.
[345] S. Shao, L. Li, G. Yang, J. Li, C. Luo, et al., Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers, Int. J. Pharm. 421 (2011) 310–320. https://doi.org/10.1016/j.ijpharm.2011.09.033.
[346] A.u.R. Khan, M. Nadeem, M.A. Bhutto, F. Yu, X. Xie, et al., Physico-Chemical and Biological Evaluation of PLCL/SF Nanofibers Loaded with Oregano Essential Oil, Pharmaceutics. 11 (2019) 386. https://doi.org/10.3390/pharmaceutics11080386.
[347] G. Guo, S. Fu, L. Zhou, H. Liang, M. Fan, et al., Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells, Nanoscale. 3 (2011) 3825. https://doi.org/10.1039/c1nr10484e.
[348] E. Thangaraju, N.T. Srinivasan, R. Kumar, P.K. Sehgal, S. Rajiv, Fabrication of electrospun Poly L-lactide and Curcumin loaded Poly L-lactide nanofibers for drug delivery, Fibers Polym. 13 (2012) 823–830. https://doi.org/10.1007/s12221-012-0823-3.
[349] X.-Z. Sun, G.R. Williams, X.-X. Hou, L.-M. Zhu, Electrospun curcumin-loaded fibers with potential biomedical applications, Carbohydr. Polym. 94 (2013) 147–153. https://doi.org/10.1016/j.carbpol.2012.12.064.
[350] R. Sridhar, S. Ravanan, J.R. Venugopal, S. Sundarrajan, D. Pliszka, et al., Curcumin- and natural extract-loaded nanofibres for potential treatment of lung and breast cancer: in vitro efficacy evaluation, J. Biomater. Sci. Polym. Ed. 25 (2014) 985–998. https://doi.org/10.1080/09205063.2014.917039.
[351] M. Sampath, R. Lakra, P. Korrapati, B. Sengottuvelan, Curcumin loaded poly (lactic-co-glycolic) acid nanofiber for the treatment of carcinoma, Colloids Surf. B: Biointerfaces. 117 (2014) 128–134. https://doi.org/10.1016/j.colsurfb.2014.02.020.
[352] C. Wang, C. Ma, Z. Wu, H. Liang, P. Yan, et al., Enhanced Bioavailability and Anticancer Effect of Curcumin-Loaded Electrospun Nanofiber: In Vitro and In Vivo Study, Nanoscale. Research Letters 10 (2015) 439. https://doi.org/10.1186/s11671-015-1146-2.
[353] G. Yakub, A. Toncheva, V. Kussovski, R. Toshkova, A. Georgieva, et al., Curcumin-PVP Loaded Electrospun Membranes with Conferred Antibacterial and Antitumoral Activities, Fibers Polym. 21 (2020) 55–65. https://doi.org/10.1007/s12221-020-9473-z.
[354] Y.E. Bulbul, M. Okur, F. Demirtas-Korkmaz, N. Dilsiz, Development of PCL/PEO electrospun fibrous membranes blended with silane-modified halloysite nanotube as a curcumin release system, Appl. Clay Sci. 186 (2020) 105430. https://doi.org/10.1016/j.clay.2019.105430.
[355] S. Kota, P. Dumpala, R. Sajja, R. Anantha, Investigation of functional characteristics of copper/copper oxide nanoparticles synthesized with Moringa oleifera and Musa sps. extracts: in-vitro and porcine study, Sci. Rep. 14 (2024) 30857. https://doi.org/10.1038/s41598-024-81169-5.
[356] Y. Cheng, X. Ma, W. Huang, Y. Chen, Functionalized Natural Polymer-Based Electrospun Nanofiber, in: S.K. Tiwari, K. Sharma, V. Sharma, V. Kumar (Eds.), Electrospun Nanofibers: Fabrication, Functionalisation and Applications, Springer International Publishing, Cham. (2021) 285–314. https://doi.org/10.1007/978-3-030-79979-3_11.
[357] G. İlyasoğlu, T. Abdullah, O. Okay, İ. Koyuncu, Design of Electrospun Hydrophobically Modified Polyacrylic acid Hydrogel Nanofibers and their Application for Removal of Ciprofloxacin, J. Polym. Environ. 33 (2025) 1705–1721. https://doi.org/10.1007/s10924-025-03504-9.

Cited By

Crossref Google Scholar
Advances in electrospinning techniques for synthesis of nanofibers loaded with herbal extracts and natural ingredients: A comprehensive review
Submitted
2024-05-02
Available online
2025-02-28
How to Cite
Forouzande, R., Gharehaghaji, A. A., & Mohammadi, D. (2025). Advances in electrospinning techniques for synthesis of nanofibers loaded with herbal extracts and natural ingredients: A comprehensive review. Synthesis and Sintering, 5(1), 1-40. https://doi.org/10.53063/synsint.2025.51226