Advancements in dental implant technology: the impact of smart polymers utilized through 3D printing

  • Aliasghar Abouchenari 1
  • Neda Tajbakhsh 2
  • Amirhosein Shahbaz 3
  • Ghazal Alamdari-Mahd 4
  • 1 Department of Material Science and Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
  • 2 Department of Prosthodontics, School of Dentistry, Islamic Azad University, Tehran Dental Branch, Tehran, Iran
  • 3 Department of Materials Engineering, Karaj Branch, Islamic Azad University, Karaj, Iran
  • 4 Faculty of Dentistry, Urmia University of Medical Sciences, Urmia, Iran

Abstract

The field of dental implantology has witnessed significant advancements in recent years, driven by innovations in materials science and manufacturing technologies. One such innovation that holds promise for revolutionizing dental implant generation is mixing smart polymers through three-D printing. This evaluation article affords a comprehensive overview of the effect of clever polymers in enhancing the performance and functionality of dental implants. We begin by elucidating smart polymers' fundamental residences, which include their stimuli-responsive conduct, biocompatibility, and mechanical strength. Sooner or later, we discover the evolution and programs of 3D printing, e.g. direct metallic laser sintering (DMLS) and selective laser melting (SLM), in dentistry, highlighting its position in fabricating custom-designed dental implants. Combining smart polymers into dental implants is discussed in element, overlaying surface modification techniques, incorporation of bioactive dealers, and customization for affected person-particular desires. Furthermore, we look at how smart polymers make contributions to enhancing aspects such as osseointegration, peri-implantitis management, and average implant toughness. Clinical insights and case studies are presented to illustrate the real-global applications and results of clever polymer-based dental implants. Ultimately, this evaluation objective is to offer valuable insights for clinicians, researchers, and industry specialists worried about the improvement and utilization of advanced dental implant technologies.

Downloads

Download data is not yet available.
Keywords: Smart polymers, Synthesis, 3D printing methods, Dental implanting, Custom dental prosthetics, Direct metal laser sintering

References

[1] R. Kampes, S. Zechel, M.D. Hager, U.S. Schubert, Halogen bonding in polymer science: towards new smart materials, Chem. Sci. 12 (2021) 9275–9286. https://doi.org/10.1039/D1SC02608A.
[2] L. Peponi, M.P. Arrieta, A. Mujica-Garcia, D. López, Smart polymers, Modification of polymer properties, Elsevier. (2017) 131–154. https://doi.org/10.1016/B978-0-323-44353-1.00006-3.
[3] X. Fan, J.Y. Chung, Y.X. Lim, Z. Li, X.J. Loh, Review of adaptive programmable materials and their bioapplications, ACS Appl. Mater. Interfaces. 8 (2016) 33351–33370. https://doi.org/10.1021/acsami.6b09110.
[4] M.S. Block, Dental implants: the last 100 years, J. Oral Maxillofac. Surg. 76 (2018) 11–26. https://doi.org/10.1016/j.joms.2017.08.045.
[5] A. Mahmood, N. Maher, F. Amin, A.Y. Alqutaibi, N. Kumar, M.S. Zafar, Chitosan-based materials for dental implantology: A comprehensive review, Int. J. Biol. Macromol. 268 (2024) 131823. https://doi.org/10.1016/j.ijbiomac.2024.131823.
[6] P. Jagadeesh, M. Puttegowda, S.M. Rangappa, K. Alexey, S. Gorbatyuk, et al., A comprehensive review on 3D printing advancements in polymer composites: Technologies, materials, and applications, J. Adv. Manuf. Technol. 121 (2022) 127–169. https://doi.org/10.1007/s00170-022-09406-7.
[7] M. Falahati, P. Ahmadvand, S. Safaee, Y.-C. Chang, Z. Lyu, et al., Smart polymers and nanocomposites for 3D and 4D printing, Mater. Today. 40 (2020) 215–245. https://doi.org/10.1016/j.mattod.2020.06.001.
[8] C.V. Tigmeanu, L.C. Ardelean, L.-C. Rusu, M.-L. Negrutiu, Additive manufactured polymers in dentistry, current state-of-the-art and future perspectives-a review, Polymers. 14 (2022) 3658. https://doi.org/10.3390/polym14173658.
[9] D. Mukherji, C.M. Marques, K. Kremer, Smart responsive polymers: Fundamentals and design principles, Annu. Rev. Condens. Matter Phys. 11 (2020) 271–299. https://doi.org/10.1146/annurev-conmatphys-031119-050618.
[10] D.K. Schneiderman, M.A. Hillmyer, 50th anniversary perspective: there is a great future in sustainable polymers, Macromolecules. 50 (2017) 3733–3749. https://doi.org/10.1021/acs.macromol.7b00293.
[11] R.C.P. Verpaalen, T. Engels, A.P.H.J. Schenning, M.G. Debije, Stimuli-responsive shape changing commodity polymer composites and bilayers, ACS Appl. Mater. Interfaces. 12 (2020) 38829–38844. https://doi.org/10.1021/acsami.0c10802.
[12] M.R.A. Bhatti, A. Kernin, M. Tausif, H. Zhang, D. Papageorgiou, et al., Light‐driven actuation in synthetic polymers: a review from fundamental concepts to applications, Adv. Opt. Mater. 10 (2022) 2102186. https://doi.org/10.1002/adom.202102186.
[13] I. Roy, M.N. Gupta, Smart polymeric materials: emerging biochemical applications, Chem. Biol. 10 (2003) 1161–1171. https://doi.org/10.1016/j.chembiol.2003.12.004.
[14] Z.F. Gao, H. Zhu, Y. Li, X. Yang, X. Ren, et al., Revolutionizing biosensing with superwettability: Designs, mechanisms, and applications, Nano Today. 53 (2023) 102008. https://doi.org/10.1016/j.nantod.2023.102008.
[15] M. Zhu, A.K. Whittaker, F.Y. Han, M.T. Smith, Journey to the Market: The Evolution of Biodegradable Drug Delivery Systems, Appl. Sci. 12 (2022) 935. https://doi.org/10.3390/app12020935.
[16] A. Adibfar, S. Hosseini, M. Baghaban Eslaminejad, Smart polymeric systems: a biomedical viewpoint, Adv. Exp. Med. Biol. 1298 (2020) 133–148. https://doi.org/10.1007/5584_2020_563.
[17] S. Lakkadwala, S. Nguyen, J. Nesamony, A.S. Narang, S.H. Boddu, Smart Polymers, Drug Delivery, Excipient Applications in Formulation Design and Drug Delivery, Springer, Cham. (2015) 169–199. https://doi.org/10.1007/978-3-319-20206-8_1.
[18] J. Huang, Y. Jiang, Q. Chen, H. Xie, S. Zhou, Bioinspired thermadapt shape-memory polymer with light-induced reversible fluorescence for rewritable 2D/3D-encoding information carriers, Nat. Commun. 14 (2023) 7131. https://doi.org/10.1038/s41467-023-42795-1.
[19] T. Dayyoub, A.V. Maksimkin, O.V. Filippova, V.V. Tcherdyntsev, D.V. Telyshev, Shape memory polymers as smart materials: A review, Polymers. 14 (2022) 3511. https://doi.org/10.3390/polym14173511.
[20] X.-d. Qi, Y. Wang, Novel techniques for the preparation of shape-memory Polymers, polymer blends and composites at micro and nanoscales, Shape Memory Polymers, Blends and Composites: Advances and Applications, Springer, Singapore. (2020) 53–83. https://doi.org/10.1007/978-981-13-8574-2_3.
[21] T. Oyama, Cross-linked polymer synthesis, Encyclopedia of polymeric nanomaterials, Berlin, Heidelberg: Springer Berlin Heidelberg. (2014) 1–11. https://doi.org/10.1007/978-3-642-29648-2_181.
[22] A. Subash, B. Kandasubramanian, 4D printing of shape memory polymers, Eur. Polym. J. 134 (2020) 109771. https://doi.org/10.1016/j.eurpolymj.2020.109771.
[23] J. Leng, X. Lan, Y. Liu, S. Du, Shape-memory polymers and their composites: stimulus methods and applications, Prog. Mater. Sci. 56 (2011) 1077–1135. https://doi.org/10.1016/j.pmatsci.2011.03.001.
[24] R. de Sousa Victor, A. Marcelo da Cunha Santos, B. Viana de Sousa, G. de Araújo Neves, L. Navarro de Lima Santana, R. Rodrigues Menezes, A review on Chitosan’s uses as biomaterial: Tissue engineering, drug delivery systems and cancer treatment, Materials. 13 (2020) 4995. https://doi.org/10.3390/ma13214995.
[25] B. Pavan Kalyan, L. Kumar, 3D printing: applications in tissue engineering, medical devices, and drug delivery, Aaps Pharmscitech. 23 (2022) 92. https://doi.org/10.1208/s12249-022-02242-8.
[26] B. Chang, B. Zhang, T. Sun, Smart polymers with special wettability, Small. 13 (2017) 1503472. https://doi.org/10.1002/smll.201503472.
[27] L. Jingcheng, V.S. Reddy, W.A.D.M. Jayathilaka, A. Chinnappan, S. Ramakrishna, R. Ghosh, Intelligent Polymers, Fibers and Applications, Polymers. 13 (2021) 1427. https://doi.org/10.3390/polym13091427.
[28] G. Pasparakis, M. Vamvakaki, Multiresponsive polymers: nano-sized assemblies, stimuli-sensitive gels and smart surfaces, Polym. Chem. 2 (2011) 1234–1248. https://doi.org/10.1039/C0PY00424C.
[29] J.M. Hoffman, P.S. Stayton, A.S. Hoffman, J.J. Lai, Stimuli-responsive reagent system for enabling microfluidic immunoassays with biomarker purification and enrichment, Bioconjug. Chem. 26 (2015) 29–38. https://doi.org/10.1021/bc500522k.
[30] S. Shidhaye, F. Badshah, N. Prabhu, P. Parikh, Smart Polymers: A Smart Approach to Drug Delivery, World J. Pharm. Res. 3 (2014) 159–172.
[31] D.D. Chakraborty, L. Nath, P. Chakraborty, Recent progress in smart polymers: Behavior, mechanistic understanding and application, Polym-Plast. Technol. Eng. 57 (2018) 945–957. https://doi.org/10.1080/03602559.2017.1364383.
[32] H. Chen, J. Guo, Y. Wang, W. Dong, Y. Zhao, L. Sun, Bio-Inspired Imprinting Materials for Biomedical Applications, Adv. Sci. 9 (2022) 2202038. https://doi.org/10.1002/advs.202202038.
[33] Y. Zhang, Y. Huang, Rational design of smart hydrogels for biomedical applications, Front. Chem. 8 (2021) 615665. https://doi.org/10.3389/fchem.2020.615665.
[34] S. Ganguly, S. Margel, Design of magnetic hydrogels for hyperthermia and drug delivery, Polymers. 13 (2021) 4259. https://doi.org/10.3390/polym13234259.
[35] U. Arif, S. Haider, A. Haider, N. Khan, A.A. Alghyamah, et al., Biocompatible polymers and their potential biomedical applications: A review, Curr. Pharm. Des. 25 (2019) 3608–3619. https://doi.org/10.2174/1381612825999191011105148.
[36] J. Baranwal, B. Barse, A. Fais, G.L. Delogu, A. Kumar, Biopolymer: A sustainable material for food and medical applications, Polymers. 14 (2022) 983. https://doi.org/10.3390/polym14050983.
[37] B.M. Holzapfel, J.C. Reichert, J.-T. Schantz, U. Gbureck, L. Rackwitz, et al., How smart do biomaterials need to be? A translational science and clinical point of view, Adv. Drug Deliv. Rev. 65 (2013) 581–603. https://doi.org/10.1016/j.addr.2012.07.009.
[38] M. Jarman-Smith, Biocompatibility of Polymers, Materials for Medical Devices, ASM Int. 23 (2012) 135–143. https://doi.org/10.31399/asm.hb.v23.a0005667.
[39] A.K. Bajpai, J. Bajpai, R.K. Saini, P. Agrawal, A. Tiwari, Smart Biomaterial Devices: Polymers, Biomedical Sciences, MRS Bull. 43 (2018) 245–245. https://doi.org/10.1557/mrs.2018.62.
[40] H.-J. Huang, Y.-L. Tsai, S.-H. Lin, S.-h. Hsu, Smart polymers for cell therapy and precision medicine, J. Biomed. Sci. 26 (2019) 1–11. https://doi.org/10.1186/s12929-019-0571-4.
[41] H. Wei, J. Cui, K. Lin, J. Xie, X. Wang, Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration, Bone Res. 10 (2022) 17. https://doi.org/10.1038/s41413-021-00180-y.
[42] T.G. Sahana, P.D. Rekha, Biopolymers: Applications in wound healing and skin tissue engineering, Mol. Biol. Rep. 45 (2018) 2857–2867. https://doi.org/10.1007/s11033-018-4296-3.
[43] W. Duan, X. Jin, Y. Zhao, S. Martin-Saldaña, S. Li, et al., Engineering injectable hyaluronic acid-based adhesive hydrogels with anchored PRP to pattern the micro-environment to accelerate diabetic wound healing, Carbohydr. Polym. 337 (2024) 122146. https://doi.org/10.1016/j.carbpol.2024.122146.
[44] M. Bhandari, D.P. Kaur, S. Raj, T. Yadav, M.A. Abourehab, M.S. Alam, Electrically conducting smart biodegradable polymers and their applications, Handbook of Biodegradable Materials, Springer. (2023) 391–413. https://doi.org/10.1007/978-3-031-09710-2_64.
[45] C. Luo, Y. Liu, B. Peng, M. Chen, Z. Liu, et al., PEEK for oral applications: Recent advances in mechanical and adhesive properties, Polymers. 15 (2023) 386. https://doi.org/10.3390/polym15020386.
[46] A. Gull, R.U. Haq, M.A. Sheikh, T.A. Ganaie, M.A. Lone, S. Khursid, Trends in Smart Biopolymer Composites and Polymer Solids with Multidisciplinary Applications in Nanoscience and Nanotechnology, Nanotechnology-Enhanced Solid Materials, Apple Academic Press. (2023) 77–98. https://doi.org/10.1201/9781003333449-4.
[47] A. Chaudhuri, K.K. Sandha, A.K. Agrawal, P.N. Gupta, Introduction to smart polymers and their application, Smart Polymeric Nano-Constructs in Drug Delivery, Elsevier. (2023) 1–46. https://doi.org/10.1016/B978-0-323-91248-8.00002-7.
[48] Z. Ahmad, S. Salman, S.A. Khan, A. Amin, Z.U. Rahman, et al., Versatility of hydrogels: from synthetic strategies, classification, and properties to biomedical applications, Gels. 8 (2022) 167. https://doi.org/10.3390/gels8030167.
[49] A. Bajpai, A. Baigent, S. Raghav, C.Ó. Brádaigh, V. Koutsos, N. Radacsi, 4D Printing: Materials, Technologies, and Future Applications in the Biomedical Field, Sustainability. 12 (2020) 10628. https://doi.org/10.3390/su122410628.
[50] R. Wu, L. Ma, X.Y. Liu, From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics, Adv. Sci. 9 (2022) 2103981. https://doi.org/10.1002/advs.202103981.
[51] S.K. Melly, L. Liu, Y. Liu, J. Leng, Active composites based on shape memory polymers: overview, fabrication methods, applications, and future prospects, J. Mater. Sci. 55 (2020) 10975–11051. https://doi.org/10.1007/s10853-020-04761-w.
[52] G.J.M. Antony, S. Aruna, C.S. Jarali, S. Raja, Electrical and thermal stimuli responsive thermoplastic shape memory polymer composites containing rGO, Fe3O4 and rGO–Fe3O4 fillers, Polym. Bull. 78 (2021) 6267–6289. https://doi.org/10.1007/s00289-020-03427-6.
[53] Y. Xia, Y. He, F. Zhang, Y. Liu, J. Leng, A review of shape memory polymers and composites: mechanisms, materials, and applications, Adv. Mater. 33 (2021) 2000713. https://doi.org/10.1002/adma.202000713.
[54] D. Ratna, J. Karger-Kocsis, Recent advances in shape memory polymers and composites: a review, J. Mater. Sci. 43 (2008) 254–269. https://doi.org/10.1007/s10853-007-2176-7.
[55] R. Brighenti, Y. Li, F.J. Vernerey, Smart polymers for advanced applications: a mechanical perspective review, Front. Mater. 7 (2020) 196. https://doi.org/10.3389/fmats.2020.00196.
[56] P. S. de O. Patrício, F.V. Pereira, M.C. dos Santos, P.P. de Souza, J.P.B. Roa, R.L. Orefice, Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties, J. Appl. Polym. Sci. 127 (2013) 3613–3621. https://doi.org/10.1002/app.37811.
[57] A.V. Goponenko, Y.A. Dzenis, Role of mechanical factors in applications of stimuli-responsive polymer gels–Status and prospects, Polymer. 101 (2016) 415–449. https://doi.org/10.1016/j.polymer.2016.08.068.
[58] M.A. Haq, Y. Su, D. Wang, Mechanical properties of PNIPAM based hydrogels: A review, Mater. Sci. Eng: C. 70 (2017) 842–855. https://doi.org/10.1016/j.msec.2016.09.081.
[59] S. Mondal, Recent developments in temperature responsive shape memory polymers, Mini-Rev. Org. Chem. 6 (2009) 114–119. https://doi.org/10.2174/157019309788167675.
[60] S. Pillai, A. Upadhyay, P. Khayambashi, I. Farooq, H. Sabri, et al., Dental 3D-printing: transferring art from the laboratories to the clinics, Polymers. 13 (2021) 157. https://doi.org/10.3390/polym13010157.
[61] L. Lin, Y. Fang, Y. Liao, G. Chen, C. Gao, P. Zhu, 3D printing and digital processing techniques in dentistry: a review of literature, Adv. Eng. Mater. 21 (2019) 1801013. https://doi.org/10.1002/adem.201801013.
[62] G. Oberoi, S. Nitsch, M. Edelmayer, K. Janjić, A.S. Müller, H. Agis, 3D Printing—encompassing the facets of dentistry, Front. Bioeng. Biotechnol. 6 (2018) 172. https://doi.org/10.3389/fbioe.2018.00172.
[63] A.A.I. Habib, N.A. Sheikh, 3D printing review in numerous applications for dentistry, J. Inst. Eng. (India): C. 103 (2022) 991–1000. https://doi.org/10.1007/s40032-022-00810-2.
[64] R.-F. Kuo, Y.-S. Lin, T.-H. Yang, A.-T. Nguyen, 3D printing: limitations, safety, and regulatory considerations for oral health science, 3D Printing in Oral Health Science: Applications and Future Directions, Springer International Publishing. (2022) 269–291. https://doi.org/10.1007/978-3-031-07369-4_13.
[65] M. Kouhi, I.J. de Souza Araújo, F. Asa’ad, L. Zeenat, S.S.R. Bojedla, et al., Recent advances in additive manufacturing of patient-specific devices for dental and maxillofacial rehabilitation, Dent. Mater. 40 (2024) 700–715. https://doi.org/10.1016/j.dental.2024.02.006.
[66] A. Zoabi, I. Redenski, D. Oren, A. Kasem, A. Zigron, et al., 3D printing and virtual surgical planning in oral and maxillofacial surgery, J. Clin. Med. 11 (2022) 2385. https://doi.org/10.3390/jcm11092385.
[67] S.C. Nyirjesy, M. Heller, N. von Windheim, A. Gingras, S.Y. Kang, et al., The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3- dimensional printing in head and neck oncologic surgery: A review and future directions, Oral Oncol. 132 (2022) 105976. https://doi.org/10.1016/j.oraloncology.2022.105976.
[68] S. Shaikh, P. Nahar, H.M. Ali, Current perspectives of 3d printing in dental applications, Braz. Dent. Sci. 24 (2021) 1–9. https://doi.org/10.14295/bds.2021.v24i3.2481.
[69] H. Cai, X. Xu, X. Lu, M. Zhao, Q. Jia, et al., Dental Materials Applied to 3D and 4D Printing Technologies: A Review, Polymers. 15 (2023) 2405. https://doi.org/10.3390/polym15102405.
[70] R.L.J. Cruz, M.T. Ross, S.K. Powell, M.A. Woodruff, Advancements in Soft-Tissue Prosthetics Part A: The Art of Imitating Life, Front. Bioeng. Biotechnol. 8 (2020) 121. https://doi.org/10.3389/fbioe.2020.00121.
[71] E.J. Parry, A study assessing the viability of using Fused Filament Fabrication (FFF) Additive Manufacturing (AM) technology to manufacture customised Class I medical devices, Manchester Metropolitan University. (2023).
[72] N. Nagarajan, A. Dupret-Bories, E. Karabulut, P. Zorlutuna, N.E. Vrana, Enabling personalized implant and controllable biosystem development through 3D printing, Biotechnol. Adv. 36 (2018) 521–533. https://doi.org/10.1016/j.biotechadv.2018.02.004.
[73] D. Khorsandi, A. Fahimipour, P. Abasian, S.S. Saber, M. Seyedi, et al., 3D and 4D printing in dentistry and maxillofacial surgery: Printing techniques, materials, and applications, Acta Biomater. 122 (2021) 26–49. https://doi.org/10.1016/j.actbio.2020.12.044.
[74] A.M. Arefin, N.R. Khatri, N. Kulkarni, P.F. Egan, Polymer 3D printing review: Materials, process, and design strategies for medical applications, Polymers. 13 (2021) 1499. https://doi.org/10.3390/polym13091499.
[75] L.V.C. Arcila, N. de Carvalho Ramos, M.A. Bottino, J.P.M. Tribst, Indications, materials and properties of 3D printing in dentistry: a literature overview, Research, Soc. Develop. 9 (2020) e80791110632. https://doi.org/10.33448/rsd-v9i11.10632.
[76] Z. Al-Dulimi, M. Wallis, D.K. Tan, M. Maniruzzaman, A. Nokhodchi, 3D printing technology as innovative solutions for biomedical applications, Drug Discov. Today. 26 (2021) 360–383. https://doi.org/10.1016/j.drudis.2020.11.013.
[77] S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing, Chem. Rev. 117 (2017) 10212–10290. https://doi.org/10.1021/acs.chemrev.7b00074.
[78] M.E. Prendergast, J.A. Burdick, Recent advances in enabling technologies in 3D printing for precision medicine, Adv. Mater. 32 (2020) 1902516. https://doi.org/10.1002/adma.201902516.
[79] J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dent. Mater. 32 (2016) 54–64. https://doi.org/10.1016/j.dental.2015.09.018.
[80] G. Ogoh, The ethical issues of additive manufacturing, De Montfort University. (2020).
[81] F. Angelone, A.M. Ponsiglione, C. Ricciardi, G. Cesarelli, M. Sansone, F. Amato, Diagnostic Applications of Intraoral Scanners: A Systematic Review, J. Imaging. 9 (2023) 134. https://doi.org/10.3390/jimaging9070134.
[82] M. Chen, M. Ren, Y. Shi, X. Liu, H. Wei, State-of-the-art polyetheretherketone three-dimensional printing and multifunctional modification for dental implants, Front. Bioeng. Biotechnol. 11 (2023) 1271629. https://doi.org/10.3389/fbioe.2023.1271629.
[83] M.F. Kunrath, Customized dental implants: Manufacturing processes, topography, osseointegration and future perspectives of 3D fabricated implants, Bioprinting. 20 (2020) e00107. https://doi.org/10.1016/j.bprint.2020.e00107.
[84] A.R.G. Cortes, O.H.P. Baptista, N.R.M. Zambrana, Digital implant surgery, Digital Restorative Dentistry: A Guide to Materials, Equipment, and Clinical Procedures, Springer, Cham. (2019) 181–205. https://doi.org/10.1007/978-3-030-15974-0_9.
[85] M.B. Kumar, P. Sathiya, M. Varatharajulu, Selective laser sintering, Advances in Additive Manufacturing Processes; Bentham Science Publisher, Beijing, China. (2021) 28–47. https://doi.org/10.2174/9789815036336121010007.
[86] A.K. Kushwaha, M.H. Rahman, E. Slater, R. Patel, C. Evangelista, et al., Powder bed fusion–based additive manufacturing: SLS, SLM, SHS, and DMLS, Tribology of Additively Manufactured Materials, Elsevier. (2022) 1–37. https://doi.org/10.1016/B978-0-12-821328-5.00001-9.
[87] M. Revilla‐León, M. Sadeghpour, M. Özcan, A review of the applications of additive manufacturing technologies used to fabricate metals in implant dentistry, J. Prosthodont. 29 (2020) 579–593. https://doi.org/10.1111/jopr.13212.
[88] R. Smeets, B. Stadlinger, F. Schwarz, B. Beck-Broichsitter, O. Jung, et al., Impact of dental implant surface modifications on osseointegration, BioMed Res. Int. 2016 (2016) 6285620. https://doi.org/10.1155/2016/6285620.
[89] F. Mangano, L. Chambrone, R. Van Noort, C. Miller, P. Hatton, C. Mangano, Direct metal laser sintering titanium dental implants: a review of the current literature, Int. J. Biomater. 2014 (2014) 461534. https://doi.org/10.1155/2014/461534.
[90] A. Barazanchi, K.C. Li, B. Al‐Amleh, K. Lyons, J.N. Waddell, Additive technology: update on current materials and applications in dentistry, J. Prosthodont. 26 (2017) 156–163. https://doi.org/10.1111/jopr.12510.
[91] C. Cosma, J. Kessler, A. Gebhardt, I. Campbell, N. Balc, Improving the Mechanical Strength of Dental Applications and Lattice Structures SLM Processed, Materials. 13 (2020) 905. https://doi.org/10.3390/ma13040905.
[92] A. Kumar, A. Kumar, A. Kumar, Laser-based Technologies for Sustainable Manufacturing, CRC Press. (2023). https://doi.org/10.1201/9781003402398.
[93] F. Grecchi, P.A. Zecca, A. Macchi, A. Mangano, F. Riva, et al., Full-digital workflow for fabricating a custom-made direct metal laser sintering (Dmls) mandibular implant: A case report, Int. J. Environ. Res. Public Health. 17 (2020) 2693. https://doi.org/10.3390/ijerph17082693.
[94] R. Prabhu, G. Prabhu, E. Baskaran, E.M. Arumugam, Clinical acceptability of metal-ceramic fixed partial dental prosthesis fabricated with direct metal laser sintering technique-5 year follow-up, J. Indian Prosthodont. Soc. 16 (2016) 193–197. https://doi.org/10.4103/0972-4052.176526.
[95] F. Rezaie, M. Farshbaf, M. Dahri, M. Masjedi, R. Maleki, et al., 3D printing of dental prostheses: Current and emerging applications, J. Compos. Sci. 7 (2023) 80. https://doi.org/10.3390/jcs7020080.
[96] F. Zhao, Z. Zhang, W. Guo, The 3-dimensional printing for dental tissue regeneration: the state of the art and future challenges, Front. Bioeng. Biotechnol. 12 (2024) 1356580. https://doi.org/10.3389/fbioe.2024.1356580.
[97] S. Kligman, Z. Ren, C.-H. Chung, M.A. Perillo, Y.-C. Chang, et al., The impact of dental implant surface modifications on osseointegration and biofilm formation, J. Clin. Med. 10 (2021) 1641. https://doi.org/10.3390/jcm10081641.
[98] A.A. Balhaddad, I.M. Garcia, L. Mokeem, R. Alsahafi, A. Majeed-Saidan, et al., Three-dimensional (3D) printing in dental practice: applications, areas of interest, and level of evidence, Clin. Oral Investig. 27 (2023) 2465–2481. https://doi.org/10.1007/s00784-023-04983-7.
[99] A. Kumar, R. Misra, 3D-printed titanium alloys for orthopedic applications, Titanium in medical and dental applications, Elsevier. (2018) 251–275. https://doi.org/10.1016/B978-0-12-812456-7.00012-3.
[100] X. Sheng, A. Wang, Z. Wang, H. Liu, J. Wang, C. Li, Advanced surface modification for 3D-printed titanium alloy implant interface functionalization, Front. Bioeng. Biotechnol. 10 (2022) 850110. https://doi.org/10.3389/fbioe.2022.850110.
[101] H. Wu, X. Chen, L. Kong, P. Liu, Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review, Materials. 16 (2023) 6860. https://doi.org/10.3390/ma16216860.
[102] O. Ashkani, M.R. Tavighi, M. Karamimoghadam, M. Moradi, M. Bodaghi, M. Rezayat, Influence of aluminum and copper on mechanical properties of biocompatible Ti-Mo Alloys: A simulation-based investigation, Micromachines. 14 (2023) 1081. https://doi.org/10.3390/mi14051081.
[103] S.S. Sidhu, M.A.-H. Gepreel, M. Bahraminasab, Advances in titanium bio-implants: Alloy design, surface engineering and manufacturing processes, J. Mater. Res. 37 (2022) 2487–2490. https://doi.org/10.1557/s43578-022-00661-8.
[104] M.V. Varma, B. Kandasubramanian, S.M. Ibrahim, 3D printed scaffolds for biomedical applications, Mater. Chem. Phys. 255 (2020) 123642. https://doi.org/10.1016/j.matchemphys.2020.123642.
[105] A. Domb, B. Mizrahi, S. Farah, Biomaterials and Biopolymers, Springer International Publishing. (2023). https://doi.org/10.1007/978-3-031-36135-7.
[106] A. Mansoor, Z. Khurshid, M.T. Khan, E. Mansoor, F.A. Butt, et al., Medical and Dental Applications of Titania Nanoparticles: An Overview, Nanomaterials. 12 (2022) 3670. https://doi.org/10.3390/nano12203670.
[107] Z. Qin, Y. He, J. Gao, Z. Dong, S. Long, et al., Surface modification improving the biological activity and osteogenic ability of 3D printing porous dental implants, Front. Mater. 10 (2023) 1183902. https://doi.org/10.3389/fmats.2023.1183902.
[108] A.I. Nicolas-Silvente, E. Velasco-Ortega, I. Ortiz-Garcia, L. Monsalve-Guil, J. Gil, A. Jimenez-Guerra, Influence of the Titanium Implant Surface Treatment on the Surface Roughness and Chemical Composition, Materials. 13 (2020) 134. https://doi.org/10.3390/ma13020314.
[109] E. Anbarzadeh, B. Mohammadi, M. Azadzaeim, Effects of acid etching parameters on the surface of dental implant fixtures treated by proposed coupled SLA-anodizing process, J. Mater. Res. 38 (2023) 4951–4966. https://doi.org/10.1557/s43578-023-01205-4.
[110] J. Alipal, N.A.S. Mohd Pu'ad, N.H.M. Nayan, N. Sahari, H.Z. Abdullah, et al., An updated review on surface functionalisation of titanium and its alloys for implants applications, Mater. Today: Proc. 42 (2021) 270–282. https://doi.org/10.1016/j.matpr.2021.01.499.
[111] S.M. Al-Zubaidi, A.A. Madfa, A.A. Mufadhal, M.A. Aldawla, O.S. Hameed, X.-G. Yue, Improvements in Clinical Durability From Functional Biomimetic Metallic Dental Implants, Front. Mater. 7 (2020) 106. https://doi.org/10.3389/fmats.2020.00106.
[112] C.M. Cristache, E.E. Totu, 3D Printing-Processed Polymers for Dental Applications, in: T.J. Gutiérrez (Ed.), Reactive and Functional Polymers Volume Three: Advanced materials, Springer International Publishing, Cham. (2021) 141–164. https://doi.org/10.1007/978-3-030-50457-1.
[113] S. Long, J. Zhu, Y. Jing, S. He, L. Cheng, Z. Shi, A Comprehensive Review of Surface Modification Techniques for Enhancing the Biocompatibility of 3D-Printed Titanium Implants, Coatings. 13 (2023) 1917. https://doi.org/10.3390/coatings13111917.
[114] H. Dong, H. Liu, N. Zhou, Q. Li, G. Yang, et al., Surface Modified Techniques and Emerging Functional Coating of Dental Implants, Coatings. 10 (2020) 1012. https://doi.org/10.3390/coatings10111012.
[115] S. Cometa, M.A. Bonifacio, M. Mattioli-Belmonte, L. Sabbatini, E. De Giglio, Electrochemical Strategies for Titanium Implant Polymeric Coatings: The Why and How, Coatings. 9 (2019) 268. https://doi.org/10.3390/coatings9040268.
[116] S. Bsat, A. Speirs, X. Huang, Recent Trends in Newly Developed Plasma-Sprayed and Sintered Coatings for Implant Applications, J. Therm. Spray Technol. 25 (2016) 1088–1110. https://doi.org/10.1007/s11666-016-0432-6.
[117] N. Bruchiel-Spanier, S. Betsis, G. Naim, D. Mandler, Electrochemical and electrophoretic coatings of medical implants by nanomaterials, J. Solid State Electrochem. 26 (2022) 1871–1896. https://doi.org/10.1007/s10008-022-05235-6.
[118] S.R. Kandavalli, Q. Wang, M. Ebrahimi, C. Gode, F. Djavanroodi, et al., A Brief Review on the Evolution of Metallic Dental Implants: History, Design, and Application, Front. Mater. 8 (2021) 646383. https://doi.org/10.3389/fmats.2021.646383.
[119] A. Baptista, F. Silva, J. Porteiro, J. Míguez, G. Pinto, Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands, Coatings. 8 (2018) 402. https://doi.org/10.3390/coatings8110402.
[120] R. Čunko, Modification of textile properties using plasma, Tekstil –Zagreb. 58 (2009) 55–74.
[121] J. Katić, A. Šarić, I. Despotović, N. Matijaković, M. Petković, Ž. Petrović, Bioactive Coating on Titanium Dental Implants for Improved Anticorrosion Protection: A Combined Experimental and Theoretical Study, Coatings. 9 (2019) 612. https://doi.org/10.3390/coatings9100612.
[122] Y. Zhang, Post-printing surface modification and functionalization of 3D-printed biomedical device, Int. J. Bioprint. 3 (2017) 001. https://doi.org/10.18063%2FIJB.2017.02.001.
[123] C. Zhang, T. Zhang, T. Geng, X. Wang, K. Lin, P. Wang, Dental Implants Loaded With Bioactive Agents Promote Osseointegration in Osteoporosis: A Review, Front. Bioeng. Biotechnol. 9 (2021) 591796. https://doi.org/10.3389/fbioe.2021.591796.
[124] L.K. Hakim, A. Yari, N. Nikparto, S.H. Mehraban, S. Cheperli, et al., The current applications of nano and biomaterials in drug delivery of dental implant, BMC Oral Health. 24 (2024) 126. https://doi.org/10.1186/s12903-024-03911-9.
[125] W. Wei, M. Zhu, S. Wu, X. Shen, S. Li, Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis, J. Inorgan. Organometall. Polym. Mater. 30 (2020) 69–87. https://doi.org/10.1007/s10904-019-01382-y.
[126] M. Kołodziejska, K. Jankowska, M. Klak, M. Wszoła, Chitosan as an Underrated Polymer in Modern Tissue Engineering, Nanomaterials. 11 (2021) 3019. https://doi.org/10.3390/nano11113019.
[127] P. Zhai, X. Peng, B. Li, Y. Liu, H. Sun, X. Li, The application of hyaluronic acid in bone regeneration, Int. J. Biol. Macromol. 151 (2020) 1224–1239. https://doi.org/10.1016/j.ijbiomac.2019.10.169.
[128] M.I. Khan, M.I. Hossain, M.K. Hossain, M.H.K. Rubel, K.M. Hossain, et al., Recent Progress in Nanostructured Smart Drug Delivery Systems for Cancer Therapy: A Review, ACS Appl. Bio Mater. 5 (2022) 971–1012. https://doi.org/10.1021/acsabm.2c00002.
[129] P. Balamurugan, N. Selvakumar, Development of patient specific dental implant using 3D printing, J. Ambient Intell. Humaniz. Comput. 12 (2021) 3549–3558. https://doi.org/10.1007/s12652-020-02758-6.
[130] J.M. Latimer, S. Maekawa, Y. Yao, D.T. Wu, M. Chen, W.V. Giannobile, Regenerative Medicine Technologies to Treat Dental, Oral, and Craniofacial Defects, Front. Bioeng. Biotechnol. 9 (2021) 704048. https://doi.org/10.3389/fbioe.2021.704048.
[131] N.C. Paxton, R.C. Nightingale, M.A. Woodruff, Capturing patient anatomy for designing and manufacturing personalized prostheses, Curr. Opin. Biotechnol. 73 (2022) 282–289. https://doi.org/10.1016/j.copbio.2021.09.004.
[132] K.S. Ahmed, H. Ibad, Z.A. Suchal, A.K. Gosain, Implementation of 3D Printing and Computer-Aided Design and Manufacturing (CAD/CAM) in Craniofacial Reconstruction, J. Craniof. Surg. 33 (2022) 1714–1719. https://doi.org/10.1097/SCS.0000000000008561.
[133] G. Pelin, M. Sonmez, C.-E. Pelin, The Use of Additive Manufacturing Techniques in the Development of Polymeric Molds: A Review, Polymers. 16 (2024) 1055. https://doi.org/10.3390/polym16081055.
[134] H.S. Alghamdi, Methods to Improve Osseointegration of Dental Implants in Low Quality (Type-IV) Bone: An Overview, J. Funct. Biomater. 9 (2018) 7. https://doi.org/10.3390/jfb9010007.
[135] A.A. Slijepcevic, A. Afshari, A.E. Vitale, S.M. Couch, L.M. Jeanpierre, J.J. Chi, A Contemporary Review of the Role of Facial Prostheses in Complex Facial Reconstruction, Plast. Reconst. Surg. 151 (2023) 288e–298e. https://doi.org/10.1097/PRS.0000000000009856.
[136] M. Meng, J. Wang, H. Huang, X. Liu, J. Zhang, Z. Li, 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects, J. Orthop. Translat. 42 (2023) 94–112. https://doi.org/10.1016/j.jot.2023.08.004.
[137] T. Joda, N.U. Zitzmann, Personalized workflows in reconstructive dentistry—current possibilities and future opportunities, Clin. Oral Investig. 26 (2022) 4283–4290. https://doi.org/10.1007/s00784-022-04475-0.
[138] T. Graf, K.-J. Erdelt, J.-F. Güth, D. Edelhoff, O. Schubert, J. Schweiger, Influence of Pre-Treatment and Artificial Aging on the Retention of 3D-Printed Permanent Composite Crowns, Biomedicines. 10 (2022) 2186. https://doi.org/10.3390/biomedicines10092186.
[139] S. Ahmad, N. Hasan, Fauziya, A. Gupta, A. Nadaf, et al., Review on 3D printing in dentistry: conventional to personalized dental care, Journal of Biomaterials Science, Polym. Ed. 33 (2022) 2292–2323. https://doi.org/10.1080/09205063.2022.2099666.
[140] T.M. Hamdy, Highlights in Contemporary Smart Dental Materials: a Review, Curr. Oral Health Rep. 10 (2023) 254–262. https://doi.org/10.1007/s40496-023-00348-x.
[141] M.H. Mobarak, M.A. Islam, N. Hossain, M.Z. Al Mahmud, M.T. Rayhan, et al., Recent advances of additive manufacturing in implant fabrication – A review, Appl. Surf. Sci. Adv. 18 (2023) 100462. https://doi.org/10.1016/j.apsadv.2023.100462.
[142] Y. Li, F. Zhang, Y. Liu, J. Leng, 4D printed shape memory polymers and their structures for biomedical applications, Sci. China Technol. Sci. 63 (2020) 545–560. https://doi.org/10.1007/s11431-019-1494-0.
[143] K. Banerjee, M. Debroy, V.K. Balla, S. Bodhak, Recent progress in 3D-printed polyaryletherketone (PAEK)-based high-performance polymeric implants for musculoskeletal reconstructions, J. Mater. Res. 36 (2021) 3877–3893. https://doi.org/10.1557/s43578-021-00231-4.
[144] S. Sun, G. Fei, X. Wang, M. Xie, Q. Guo, et al., Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing, Chem. Eng. J. 412 (2021) 128675. https://doi.org/10.1016/j.cej.2021.128675.
[145] T. Distler, A.R. Boccaccini, 3D printing of electrically conductive hydrogels for tissue engineering and biosensors – A review, Acta Biomater. 101 (2020) 1–13. https://doi.org/10.1016/j.actbio.2019.08.044.
[146] J. Gong, Y. Qian, K. Lu, Z. Zhu, L. Siow, et al., Digital light processing (DLP) in tissue engineering: from promise to reality, and perspectives, Biomed. Mater. 17 (2022) 062004. https://doi.org/10.1088/1748-605X/ac96ba.
[147] T. Siripongpreda, V.P. Hoven, B. Narupai, N. Rodthongkum, Emerging 3D printing based on polymers and nanomaterial additives: Enhancement of properties and potential applications, Eur. Polym. J. 184 (2023) 111806. https://doi.org/10.1016/j.eurpolymj.2022.111806.
[148] S. Rahmani, M. Maroufkhani, S. Mohammadzadeh-Komuleh, Z. Khoubi-Arani, Polymer nanocomposites for biomedical applications, Fundamentals of Bionanomaterials, Elsevier. (2022) 175–215. https://doi.org/10.1016/B978-0-12-824147-9.00007-8.
[149] S. Vasiliu, S. Racovita, I.A. Gugoasa, M.-A. Lungan, M. Popa, J. Desbrieres, The Benefits of Smart Nanoparticles in Dental Applications, Int. J. Mol. Sci. 22 (2021) 2585. https://doi.org/10.3390/ijms22052585.
[150] M.P. Nikolova, M.D. Apostolova, Advances in Multifunctional Bioactive Coatings for Metallic Bone Implants, Materials. 16 (2023) 183. https://doi.org/10.3390/ma16010183.
[151] G. Zhu, G. Wang, J.J. Li, Advances in implant surface modifications to improve osseointegration, Mater. Adv. 2 (2021) 6901–6927. https://doi.org/10.1039/D1MA00675D.
[152] D. Xia, J. Chen, Z. Zhang, M. Dong, Emerging polymeric biomaterials and manufacturing techniques in regenerative medicine, Aggregate. 3 (2022) e176. https://doi.org/10.1002/agt2.176.
[153] P. Ramburrun, N.A. Pringle, A. Dube, R.Z. Adam, S. D’Souza, M. Aucamp, Recent Advances in the Development of Antimicrobial and Antifouling Biocompatible Materials for Dental Applications, Materials. 14 (2021) 3167. https://doi.org/10.3390/ma14123167.
[154] A. Pandey, G. Singh, S. Singh, K. Jha, C. Prakash, 3D printed biodegradable functional temperature-stimuli shape memory polymer for customized scaffoldings, J. Mech. Behav. Biomed. Mater. 108 (2020) 103781. https://doi.org/10.1016/j.jmbbm.2020.103781.
[155] G. Singh, S. Singh, C. Prakash, R. Kumar, R. Kumar, S. Ramakrishna, Characterization of three-dimensional printed thermal-stimulus polylactic acid-hydroxyapatite-based shape memory scaffolds, Polym. Compos. 41 (2020) 3871–3891. https://doi.org/10.1002/pc.25683.
[156] R. Sharma, R. Singh, A. Batish, On mechanical and surface properties of electro-active polymer matrix-based 3D printed functionally graded prototypes, J. Thermoplast. Compos. Mater. 35 (2022) 615–630. https://doi.org/10.1177/0892705720907677.
[157] L.M. Schönhoff, F. Mayinger, M. Eichberger, E. Reznikova, B. Stawarczyk, 3D printing of dental restorations: Mechanical properties of thermoplastic polymer materials, J. Mech. Behav. Biomed. Mater. 119 (2021) 104544. https://doi.org/10.1016/j.jmbbm.2021.104544.
[158] S.-G. Chen, J. Yang, Y.-G. Jia, B. Lu, L. Ren, TiO2 and PEEK Reinforced 3D Printing PMMA Composite Resin for Dental Denture Base Applications, Nanomaterials. 9 (2019) 1049. https://doi.org/10.3390/nano9071049.
[159] M.-J. Crenn, G. Rohman, O. Fromentin, A. Benoit, Polylactic acid as a biocompatible polymer for three-dimensional printing of interim prosthesis: Mechanical characterization, Dent. Mater. J. 41 (2022) 110–116. https://doi.org/10.4012/dmj.2021-151.
[160] B. Çelebi-Saltik, S. Babadag, E. Ballikaya, S. Pat, M.Ö. Öteyaka, Osteogenic Differentiation Capacity of Dental Pulp Stem Cells on 3D Printed Polyurethane/Boric Acid Scaffold, Biolog. Trace Elem. Res. 202 (2024) 1446–1456. https://doi.org/10.1007/s12011-023-03781-2.
[161] C.K. Bell, E.F. Sahl, Y.J. Kim, D.D. Rice, Accuracy of Implants Placed with Surgical Guides: Thermoplastic Versus 3D Printed, Int. J. Periodontics Restorative Dent. 38 (2018) 113–119. https://doi.org/10.11607/prd.3254.
[162] S.M. Desai, R.Y. Sonawane, A.P. More, Thermoplastic polyurethane for three-dimensional printing applications: A review, Polym. Adv. Technol. 34 (2023) 2061–2082. https://doi.org/10.1002/pat.6041.
[163] M. Dimitrova, A. Vlahova, Y. Kalachev, S. Zlatev, R. Kazakova, S. Capodiferro, Recent Advances in 3D Printing of Polymers for Application in Prosthodontics, Polymers. 15 (2023) 4525. https://doi.org/10.3390/polym15234525.
[164] K. Jain, R. Shukla, A. Yadav, R.R. Ujjwal, S.J. Flora, 3D Printing in Development of Nanomedicines, Nanomaterials. 11 (2021) 420. https://doi.org/10.3390/nano11020420.

Cited By

Crossref Google Scholar
Advancements in dental implant technology: the impact of smart polymers utilized through 3D printing
Submitted
2024-03-22
Available online
2024-06-21
How to Cite
Abouchenari, A., Tajbakhsh, N., Shahbaz, A., & Alamdari-Mahd, G. (2024). Advancements in dental implant technology: the impact of smart polymers utilized through 3D printing. Synthesis and Sintering, 4(2), 108-123. https://doi.org/10.53063/synsint.2024.42211