A review of synthesis strategies for nickel cobaltite-based composites in supercapacitor applications

  • Yalda Tarpoudi Baheri 1
  • Amir Mahdi Homayounfard 1
  • 1 Department of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran, Iran


Supercapacitors (SCs), known for their exceptional power and reasonably high energy densities, long lifespan, and lower production costs, have emerged as an ideal solution to meet the growing demand for various energy storage applications. The characteristics of supercapacitors are greatly influenced utilizing the choice of electrode materials, developing novel electrode materials a focal point for extensive research in the field of high-performance supercapacitors. In recent years, NiCo2O4 has garnered increasing attention as a supercapacitor electrode material owing to its notable edges, including high theoretical capacity, low cost, abundant availability, and ease of synthesizing. However, the performance of NiCo2O4 is hindered by its low electrical conductivity and limited surface area, leading to significant capacity deterioration. Therefore, it is imperative to systematically and comprehensively summarize the advancements in comprehending and adjusting NiCo2O4-based electrodes from multiple perspectives. The present review primarily focuses on the synthetic approaches employed to produce NiCo2O4 nanomaterials with diverse morphologies for their application in supercapacitors. This review article provides a comprehensive overview of the synthesis approaches utilized for developing nickel cobaltite-based composites tailored for supercapacitor applications. Various synthesis methods, including sol-gel, hydrothermal, and co-precipitation techniques, are discussed in detail, emphasizing the importance of optimizing synthesis parameters to enhance the electrochemical performance of the composites. The potential applications of nickel cobaltite-based composites in supercapacitors are explored, highlighting their promising prospects in energy storage technologies. Future research directions in this field are also discussed.


Download data is not yet available.
Keywords: Supercapacitor, NiCo2O4, Energy storage, Synthesis, Electrode


[1] S.M. Mahadik, N.R. Chodankar, Y.K. Han, D.P. Dubal, S. Patil, Nickel Cobaltite: A Positive Electrode Material for Hybrid Supercapacitors, ChemSusChem. 14 (2021) 5384–5398. https://doi.org/10.1002/cssc.202101465.
[2] Y.T. Baheri, M.A. Hedayati, M. Maleki, H. Karimian, A vapor-liquid-solid mechanism for in-situ deposition of ultra-small hollow MoS2 nanoparticles in N-doped carbon foam as an anode of lithium-ion batteries, J. Energy Storage. 68 (2023) 107682. https://doi.org/10.1016/j.est.2023.107682.
[3] T. Lehtola, A. Zahedi, Solar energy and wind power supply supported by storage technology: A review, Sustain. Energy Technol. Assessments. 35 (2019) 25–31. https://doi.org/10.1016/j.seta.05.013.
[4] C.C. Tseng, J.L. Lee, Y.M. Liu, M. Der Ger, Y.Y. Shu, Microwave-assisted hydrothermal synthesis of spinel nickel cobaltite and application for supercapacitors, J. Taiwan Inst. Chem. Eng. 44 (2013) 415–419. https://doi.org/10.1016/j.jtice.2012.12.014.
[5] L. Fan, Z. Tu, S. H. Chan, Recent development of hydrogen and fuel cell technologies: A review, Energy Rep. 7 (2021) 8421–8446. https://doi.org/10.1016/j.egyr.2021.08.003.
[6] C. Wu, Q. Shen, R. Mi, S. Deng, Y. Shu, et al., Three-dimensional Co3O4/flocculent graphene hybrid on Ni foam for supercapacitor applications, J. Mater. Chem. A. 2 (2014) 15987–15994. https://doi.org/10.1039/c4ta03313b.
[7] A. Riaz, M.R. Sarker, M.H.M. Saad, R. Mohamed, Review on comparison of different energy storage technologies used in micro-energy harvesting, wsns, low-cost microelectronic devices: Challenges and recommendations, Sensors. 21 (2021) 5041. https://doi.org/10.3390/s21155041.
[8] R.R. Salunkhe, K. Jang, H. Yu, S. Yu, T. Ganesh, et al., Chemical synthesis and electrochemical analysis of nickel cobaltite nanostructures for supercapacitor applications, J. Alloys Compd. 509 (2011) 6677–6682. https://doi.org/10.1016/j.jallcom.2011.03.136.
[9] Poonam, K. Sharma, A. Arora, S.K. Tripathi, Review of supercapacitors: Materials and devices, J. Energy Storage. 21 (2019) 801–825. https://doi.org/10.1016/j.est.2019.01.010.
[10] K.K. Patel, T. Singhal, V. Pandey, T.P. Sumangala, M.S. Sreekanth, Evolution and recent developments of high performance electrode material for supercapacitors: A review, J. Energy Storage. 44 (2021) 103366. https://doi.org/10.1016/j.est.2021.103366.
[11] R. Liang, Y. Du, P. Xiao, J. Cheng, S. Yuan, et al., Transition metal oxide electrode materials for supercapacitors: A review of recent developments, Nanomaterials. 11 (2021) 1248. https://doi.org/10.3390/nano11051248.
[12] Q. Meng, K. Cai, Y. Chen, L. Chen, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy. 36 (2017) 268–285. https://doi.org/10.1016/j.nanoen.2017.04.040.
[13] A.G. Olabi, Q. Abbas, M.A. Abdelkareem, A.H. Alami, M. Mirzaeian, E.T. Sayed, Carbon-Based Materials for Supercapacitors: Recent Progress, Challenges and Barriers, Batteries. 9 (2023) 19. https://doi.org/10.3390/batteries9010019.
[14] O.S. Adedoja, E.R. Sadiku, Y. Hamam, An Overview of the Emerging Technologies and Composite Materials for Supercapacitors in Energy Storage Applications, Polymers (Basel). 15 (2023) 1–32. https://doi.org/10.3390/polym15102272.
[15] Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, et al., A review of carbon materials for supercapacitors, Mater. Des. 221 (2022) 111017. https://doi.org/10.1016/j.matdes.2022.111017.
[16] G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, J. Power Sources. 196 (2011) 1–12. https://doi.org/10.1016/j.jpowsour.2010.06.084.
[17] S.A. Delbari, L.S. Ghadimi, R. Hadi, S. Farhoudian, M. Nedaei, et al., Transition metal oxide-based electrode materials for flexible supercapacitors: A review, J. Alloys Compd. 857 (2021) 158281. https://doi.org/10.1016/j.jallcom.2020.158281.
[18] C. Yuan, J. Li, L. Hou, J. Lin, G. Pang, et al., Template-engaged synthesis of uniform mesoporous hollow NiCo 2O4 sub-microspheres towards high-performance electrochemical capacitors, RSC Adv. 3 (2013) 18573–18578. https://doi.org/10.1039/c3ra42828a.
[19] D.P. Dubal, P. Gomez-Romero, B.R. Sankapal, R. Holze, Nickel cobaltite as an emerging material for supercapacitors: An overview, Nano Energy. 11 (2015) 377–399. https://doi.org/10.1016/j.nanoen.2014.11.013.
[20] M.S. Park, J. Kim, K.J. Kim, J.W. Lee, J.H. Kim, Y. Yamauchi, Porous nanoarchitectures of spinel-type transition metal oxides for electrochemical energy storage systems, Phys. Chem. Chem. Phys. 17 (2015) 30963–30977. https://doi.org/10.1039/c5cp05936d.
[21] Y. Li, X. Han, T. Yi, Y. He, X. Li, Review and prospect of NiCo2O4-based composite materials for supercapacitor electrodes, J. Energy Chem. 31 (2019) 54–78. https://doi.org/10.1016/j.jechem.2018.05.010.
[22] M. Kaur, P. Chand, H. Anand, Effect of different synthesis methods on morphology and electrochemical behavior of spinel NiCo2O4 nanostructures as electrode material for energy storage application, Inorg. Chem. Commun. 134 (2021) 108996. https://doi.org/10.1016/j.inoche.2021.108996.
[23] A. Shah, S. Saleem, N. Ul Amin, M. Salman, Y. Ling, et al., Electrocatalytic performance investigation of NiCo2O4 nanostructures prepared by hydrothermal method and thermal post-annealing treatment, Mater. Sci. Eng. B. 294 (2023) 116508–116508. https://doi.org/10.1016/j.mseb.2023.116508.
[24] R. Kumar, NiCo2O4 Nano-/Microstructures as High-Performance Biosensors: A Review, Nano-Micro Lett. 12 (2020) 122. https://doi.org/10.1007/s40820-020-00462-w.
[25] D. Bokov, A. Turki Jalil, S. Chupradit, W. Suksatan, M. Javed Ansari, et al., Nanomaterial by Sol-Gel Method: Synthesis and Application, Adv. Mater. Sci. Eng. 2021 (2021) 1–21. https://doi.org/10.1155/2021/5102014.
[26] Y. Zhang, Y. Ru, H.-L. Gao, S.-W. Wang, J. Yan, et al., Sol-gel synthesis and electrochemical performance of NiCo2O4 nanoparticles for supercapacitor applications, J. Electrochem. Sci. Eng. 4 (2019) 243–253. https://doi.org/10.5599/jese.690.
[27] E.M. Arnold, S. Padmaja, P.N. Kumar, J.M. Shyla, Facile Sol-gel Preparation of NiCo2O4 Nanoparticles based Pseudocapacitive Electrode for Proficient Supercapacitr Performance, AIP Conf. Proc. 2770 (2023) 040001. https://doi.org//10.1063/5.0140750.
[28] T.N. Myasoedova, R. Kalusulingam, T.S. Mikhailova, Sol-Gel Materials for Electrochemical Applications: Recent Advances, Coatings. 12 (2022) 1625. https://doi.org/10.3390/coatings12111625.
[29] Y.Q. Wu, X.Y. Chen, P.T. Ji, Q.Q. Zhou, Sol-gel approach for controllable synthesis and electrochemical properties of NiCo2O4 crystals as electrode materials for application in supercapacitors, Electrochim. Acta. 56 (2011) 7517–7522. https://doi.org/10.1016/j.electacta.2011.06.101.
[30] Y. Liu, N. Wang, C. Yang, W. Hu, Sol-gel synthesis of nanoporous NiCo2O4 thin films on ITO glass as high-performance supercapacitor electrodes, Ceram. Int. 42 (2016) 11411–11416. https://doi.org/10.1016/j.ceramint.2016.04.071.
[31] Y. Zhu, X. Ji, Z. Wu, W. Song, H. Hou, et al., Spinel NiCo2O4 for use as a high-performance supercapacitor electrode material: Understanding of its electrochemical properties, Elsevier Ltd . 267 (2014). https://doi.org/10.1016/j.jpowsour.2014.05.134.
[32] M.-C. Liu, L.-B. Kong, C. Lu, X.-M. Li, Y.-C. Luo, et al., A Sol-Gel Process for the Synthesis of NiCo2O4 Having Improved Specific Capacitance and Cycle Stability for Electrochemical Capacitors, J. Electrochem. Soc. 159 (2012) A1262–A1266. https://doi.org/10.1149/2.057208jes.
[33] A. Nandagudi, S.H. Nagarajarao, M.S. Santosh, B.M. Basavaraja, S.J. Malode, et al., Hydrothermal synthesis of transition metal oxides, transition metal oxide/carbonaceous material nanocomposites for supercapacitor applications, Mater. Today Sustain. 19 (2022) 100214. https://doi.org/10.1016/j.mtsust.2022.100214.
[34] S. Yadav, A. Sharma, Importance and challenges of hydrothermal technique for synthesis of transition metal oxides and composites as supercapacitor electrode materials, J. Energy Storage. 44 (2021) 103295. https://doi.org/10.1016/j.est.2021.103295.
[35] J. Wang, Y. Zhang, J. Ye, H. Wang, J. Hao, et al., Facile synthesis of three-dimensional NiCo2O4 with different morphology for supercapacitors, RSC Adv. 6 (2016) 70077–70084. https://doi.org/10.1039/c6ra14242g.
[36] C.C. Hu, C.T. Hsu, K.H. Chang, H.Y. Hsu, Microwave-assisted hydrothermal annealing of binary Ni-Co oxy-hydroxides for asymmetric supercapacitors, J. Power Sources. 238 (2013) 180–189. https://doi.org/10.1016/j.jpowsour.2013.03.019.
[37] M.A. Yewale, R.A. Kadam, N.K. Kaushik, N.N. Linh, A.M. Teli, et al., Mesoporous hexagonal nanorods of NiCo2O4 nanoparticles via hydrothermal route for supercapacitor application, Chem. Phys. Lett. 800 (2022) 139654. https://doi.org/10.1016/j.cplett.2022.139654.
[38] R. Zou, K. Xu, T. Wang, G. He, Q. Liu, et al., Chain-like NiCo2O4 nanowires with different exposed reactive planes for high-performance supercapacitors, J. Mater. Chem. A. 1 (2013) 8560–8566. https://doi.org/10.1039/c3ta11361b.
[39] S.J. Uke, G.N. Chaudhari, A.B. Bodade, S.P. Mardikar, Morphology dependant electrochemical performance of hydrothermally synthesized NiCo2O4 nanomorphs, Mater. Sci. Energy Technol. 3 (2020) 289–298. https://doi.org/10.1016/j.mset.2019.11.004.
[40] A. Sasmal, A.K. Nayak, Morphology-dependent solvothermal synthesis of spinel NiCo2O4 nanostructures for enhanced energy storage device application, J. Energy Storage. 58 (2023) 106342. https://doi.org/10.1016/j.est.2022.106342.
[41] H. Xin, Z. Xu, Y. Liu, W. Li, Z. Hu, 3D flower-like NiCo2O4 electrode material prepared by a modified solvothermal method for supercapacitor, J. Alloys Compd. 711 (2017) 670–676. https://doi.org/10.1016/j.jallcom.2017.03.208.
[42] B. Han, J. Song, S. Liang, W. Chen, H. Deng, et al., Hierarchical NiCo2O4 hollow nanocages for photoreduction of diluted CO2: Adsorption and active sites engineering, Appl. Catal. B. 260 (2019) 118208. https://doi.org/10.1016/j.apcatb.2019.118208.
[43] Y. Zheng, L. Wang, H. Tian, L. Qiao, Y. Zeng, C. Liu, Bimetal carbonaceous templates for multi-shelled NiCo2O4 hollow sphere with enhanced xylene detection, Sens. Actuators B: Chem. 339 (2021) 129862. https://doi.org/10.1016/j.snb.2021.129862.
[44] W. Huang, Y. Cao, Y. Chen, J. Peng, X. Lai, J. Tu, Fast synthesis of porous NiCo 2 O 4 hollow nanospheres for a high-sensitivity non-enzymatic glucose sensor, Appl. Surf. Sci. 396 (2017) 804–811. https://doi.org/10.1016/j.apsusc.2016.11.034.
[45] J. Fang, C. Kang, L. Fu, S. Li, Q. Liu, Fabrication of hollow bamboo-shaped NiCo2O4 with controllable shell morphologies for high performance hybrid supercapacitors, J. Alloys Compd. 849 (2020) 156317. https://doi.org/10.1016/j.jallcom.2020.156317.
[46] L. Fu, J. Ma, Z. Zhang, G. Wang, Y. Liu, W. Li, Self-template synthesis of hollow flower-like NiCo2O4 nanoparticles as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution in alkaline media, Nanotechnol. Rev. 12 (2023) 20230103. https://doi.org/10.1515/ntrev-2023-0103.
[47] J. Wang, Y. Xiong, X. Zhang, Rational synthesis of NiCo2O4 meso-structures for high-rate supercapacitors, J. Mater. Sci. 52 (2017) 3678–3686. https://doi.org/10.1007/s10853-016-0658-1.
[48] R.R. Poolakkandy, M.M. Menamparambath, Soft-template-assisted synthesis: A promising approach for the fabrication of transition metal oxides, Nanoscale Adv. 2 (2020) 5015–5045. https://doi.org/10.1039/d0na00599a.
[49] Y. Bai, R. Wang, X. Lu, J. Sun, L. Gao, Template method to controllable synthesis 3D porous NiCo2O4 with enhanced capacitance and stability for supercapacitors, J. Colloid Interface Sci. 468 (2016) 1–9. https://doi.org/10.1016/j.jcis.2016.01.020.
[50] A. Biswal, P.K. Panda, A.N. Acharya, S. Mohapatra, N. Swain, et al., Role of Additives in Electrochemical Deposition of Ternary Metal Oxide Microspheres for Supercapacitor Applications, ACS Omega. 5 (2020) 3405–3417. https://doi.org/10.1021/acsomega.9b03657.
[51] D. Yan, W. Wang, X. Luo, C. Chen, Y. Zeng, Z. Zhu, NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor, Chem. Eng. J. 334 (2018) 864–872. https://doi.org/10.1016/j.cej.2017.10.128.
[52] L. Li, S. Peng, Y.L. Cheah, P.-L. Teh, J. Wang, et al., Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors, Chem. – A: Eur. J. 19 (2013) 5892–5898. https://doi.org/10.1002/chem.201204153.
[53] L. Li, Y. Ding, D. Yu, L. Li, S. Ramakrishna, S. Peng, Electrospun NiCo2O4 nanotubes as anodes for Li- and Na-ion batteries, J. Alloys Compd. 777 (2019) 1286–1293. https://doi.org/10.1016/j.jallcom.2018.11.115.
[54] Z. Wu, X. Pu, Y. Zhu, M. Jing, Q. Chen, et al., Uniform porous spinel NiCo2O4 with enhanced electrochemical performances, J. Alloys Compd. 632 (2015) 208–217. https://doi.org/10.1016/j.jallcom.2015.01.147.
[55] J. Zhang, Y. Sun, X. Li, J. Xu, Fabrication of NiCo2O4 nanobelt by a chemical co-precipitation method for non-enzymatic glucose electrochemical sensor application, J. Alloys Compd. 831 (2020) 154796. https://doi.org/10.1016/j.jallcom.2020.154796.
[56] R. Prakshale, S. Bangale, M. Kamble, S. Sonawale, Combustion synthesis of spinel structured NiCo2O4 nanostructures: An efficient material for gas sensing and supercapacitor electrode applications, Micro Nanostruct. 189 (2024) 207820. http://doi.org/10.1016/J.MICRNA.2024.207820.
[57] A.N. Naveen, S. Selladurai, Novel synthesis of highly porous three-dimensional nickel cobaltite for supercapacitor application, Ionics. 22 (2016) 1471–1483. https://doi.org/10.1007/s11581-016-1664-7.
[58] X. Zhang, Y. Zhou, B. Luo, H. Zhu, W. Chu, K. Huang, Microwave-assisted synthesis of nico2o4 double-shelled hollow spheres for high-performance sodium ion batteries, Nano-Micro Lett. 10 (2018) 1–7. https://doi.org/10.1007/s40820-017-0164-2.
[59] Y. Ma, Z. Yu, M. Liu, C. Song, X. Huang, et al., Deposition of binder-free oxygen-vacancies NiCo2O4 based films with hollow microspheres via solution precursor thermal spray for supercapacitors, Ceram. Int. 45 (2019) 10722–10732. https://doi.org/10.1016/j.ceramint.2019.02.145.
[60] J. Leng, Z. Wang, X. Li, H. Guo, T. Li, H. Liang, Self-templated formation of hierarchical NiCo2O4 yolk-shell microspheres with enhanced electrochemical properties, Electrochim. Acta. 244 (2017) 154–161. https://doi.org/10.1016/j.electacta.2017.05.109.
[61] M. Kundu, G. Karunakaran, E. Kolesnikov, V.E. Sergeevna, S. Kumari, et al., Hollow NiCo2O4 nano-spheres obtained by ultrasonic spray pyrolysis method with superior electrochemical performance for lithium-ion batteries and supercapacitors, J. Ind. Eng. Chem. 59 (2018) 90–98. https://doi.org/10.1016/j.jiec.2017.10.010.
[62] M. Kaur, P. Chand, H. Anand, Facile synthesis of NiCo2O4 nanostructure with enhanced electrochemical performance for supercapacitor application, Chem. Phys. Lett. 786 (2022) 139181. https://doi.org/10.1016/j.cplett.2021.139181.
[63] T.Y. Wei, C.H. Chen, H.C. Chien, S.Y. Lu, C.C. Hu, A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol-gel process, Adv. Mater. 22 (2010) 347–351. https://doi.org/10.1002/adma.200902175.
[64] M.A. Yewale, R.A. Kadam, N.K. Kaushik, S.V.P. Vattikuti, L.P. Lingamdinne, et al., Hydrothermally synthesized microrods and microballs of NiCo2O4 for supercapacitor application, Ceram. Int. 48 (2022) 22037–22046. https://doi.org/10.1016/j.ceramint.2022.04.190.
[65] Q. Wang, B. Liu, X. Wang, S. Ran, L. Wang, et al., Morphology evolution of urchin-like NiCo 2O 4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells, J. Mater. Chem. 22 (2012) 21647–21653. https://doi.org/10.1039/c2jm34705a.
[66] M. Sethi, D.K. Bhat, Facile solvothermal synthesis and high supercapacitor performance of NiCo2O4 nanorods, J. Alloys Compd. 781 (2019) 1013–1020. https://doi.org/10.1016/j.jallcom.2018.12.143.
[67] M. Haripriya, R. Sivasubramanian, A.M. Ashok, S. Hussain, G. Amarendra, Hydrothermal synthesis of NiCo2O4 –NiO nanorods for high performance supercapacitors, J. Mater. Sci. Mater. Electron. 30 (2019) 2791–2803. https://doi.org/10.1007/s10854-019-01063-z.
[68] Q. Lu, Y. Chen, W. Li, J.G. Chen, J. Q. Xiao, F. Jiao, Ordered mesoporous nickel cobaltite spinel with ultra-high supercapacitance, J. Mater. Chem. A. 1 (2013) 2331–2336. https://doi.org/10.1039/c2ta00921h.
[69] X.F. Lu, D. Wu, R. Li, Q. Li, S. Ye, et al., Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors, J. Mater. Chem. A. 2 (2014) 4706–4713. https://doi.org/10.1039/c3ta14930g.
[70] C. Wang, X. Zhang, D. Zhang, C. Yao, Y. Ma, Facile and low-cost fabrication of nanostructured NiCo2O4 spinel with high specific capacitance and excellent cycle stability, Electrochim. Acta. 63 (2012) 220–227. https://doi.org/10.1016/j.electacta.2011.12.090.
[71] Y. Lei, J. Li, Y. Wang, L. Gu, Y. Chang, et al., Rapid microwave-assisted green synthesis of 3D hierarchical flower-shaped NiCo2O4 microsphere for high-performance supercapacitor, ACS Appl. Mater. Interfaces. 6 (2014) 1773–1780. https://doi.org/10.1021/am404765y.
[72] F. Paquin, J. Rivnay, A. Salleo, N. Stingelin, C. Silva, Multi-phase semicrystalline microstructures drive exciton dissociation in neat plastic semiconductors, J. Mater. Chem. C. 3 (2015) 10715–10722. https://doi.org/10.1039/C5TC02043C.
[73] J. Xiao, S. Yang, Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo 2O4 spinel for pseudocapacitors, RSC Adv. 1 (2011) 588–595. https://doi.org/10.1039/c1ra00342a.
[74] G. Zhang, X.W. Lou, General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors, Adv. Mater. 25 (2013) 976–979. https://doi.org/10.1002/adma.201204128.

Cited By

Crossref Google Scholar
A review of synthesis strategies for nickel cobaltite-based composites in supercapacitor applications
How to Cite
Tarpoudi Baheri, Y., & Homayounfard, A. M. (2024). A review of synthesis strategies for nickel cobaltite-based composites in supercapacitor applications. Synthesis and Sintering, 4(1), 41-53. https://doi.org/10.53063/synsint.2024.41209