Synthesis, sintering and electrical properties of Li1+xGdxZr2-x(PO4)3 solid electrolytes for Li-ion batteries

  • Zahra Khakpour 1
  • Saeed Sedaghat 1
  • Mohammad Farvizi 1
  • Nima Naderi 2
  • Abouzar Massoudi 2
  • 1 Ceramic Department, Materials and Energy Research Center (MERC), Karaj, Iran
  • 2 Department of Semiconductors, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

In this study, the electrical characteristics of spark plasma sintered Li1+xMxZr2-x(PO4)3 solid electrolytes, underlining the impacts of gadolinium (Gd) substitution on lithium-ion battery performance in comparison to conventionally sintered samples. The samples with different amounts of Gd (x= 0.1, 0.2, and 0.3) were sintered by both SPS and conventional methods and characterized using advanced techniques, including field emission scanning electron microscopy (FESEM) for microstructural analysis, X-ray diffraction (XRD) for phase detection, and energy-dispersive X-ray spectroscopy (EDS) for elemental analysis. A significant improvement in densification and a subsequent reduction in porosity are observed in the SPSed samples, which is the main reason for their enhanced structural integrity. However, this increase in densification is accompanied by a complex relationship in which the presence of Gd may hinder ionic transport compared to conventionally sintered samples. Optimizing the Gd content to balance ionic conductivity and structural stability, which supports the development of solid electrolytes for lithium-ion battery applications, was emphasized.

Downloads

Download data is not yet available.
Keywords: Electrical properties, Spark plasma sintering, Gadolinium substitution, Microstructural analysis, Li1 xGdxZr2-x(PO4)3

References

[1] Y. Shao, F. Ding, J. Xiao, J. Zhang, W. Xu, et al., Making Li‐Air Batteries Rechargeable: Material Challenges, Adv. Funct. Mater. 23 (2013) 987–1004. https://doi.org/10.1002/adfm.201200688.
[2] Q. Zhao, S. Stalin, C.-Z. Zhao, L.A. Archer, Designing solid-state electrolytes for safe, energy-dense batteries, Nat. Rev. Mater. 5 (2020) 229–252. https://doi.org/10.1038/s41578-019-0165-5.
[3] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives, Chem. Soc. Rev. 40 (2011) 2525. https://doi.org/10.1039/c0cs00081g.
[4] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mater. 22 (2010) 587–603. https://doi.org/10.1021/cm901452z.
[5] A. Manthiram, X. Yu, S. Wang, Lithium battery chemistries enabled by solid-state electrolytes, Nat. Rev. Mater. 2 (2017) 16103. https://doi.org/10.1038/natrevmats.2016.103.
[6] B. Dunn, H. Kamath, J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices, Science. 334 (2011) 928–935. https://doi.org/10.1126/science.1212741.
[7] J. Janek, W.G. Zeier, A solid future for battery development, Nat. Energy. 1 (2016) 16141. https://doi.org/10.1038/nenergy.2016.141.
[8] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, et al., A lithium superionic conductor, Nat. Mater. 10 (2011) 682–686. https://doi.org/10.1038/nmat3066.
[9] Z. Jian, Y. Hu, X. Ji, W. Chen, NASICON‐Structured Materials for Energy Storage, Adv. Mater. 29 (2017) 1601925. https://doi.org/10.1002/adma.201601925.
[10] F. Zheng, M. Kotobuki, S. Song, M.O. Lai, L. Lu, Review on solid electrolytes for all-solid-state lithium-ion batteries, J. Power Sourc. 389 (2018) 198–213. https://doi.org/10.1016/j.jpowsour.2018.04.022.
[11] B.E. Francisco, C.R. Stoldt, J.-C. M’Peko, Lithium-Ion Trapping from Local Structural Distortions in Sodium Super Ionic Conductor (NASICON) Electrolytes, Chem. Mater. 26 (2014) 4741–4749. https://doi.org/10.1021/cm5013872.
[12] M. Hou, F. Liang, K. Chen, Y. Dai, D. Xue, Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries, Nanotechnology. 31 (2020) 132003. https://doi.org/10.1088/1361-6528/ab5be7.
[13] Y. Zhang, K. Chen, Y. Shen, Y. Lin, C.-W. Nan, Enhanced lithium-ion conductivity in a LiZr2(PO4)3 solid electrolyte by Al doping, Ceram. Int. 43 (2017) S598–S602. https://doi.org/10.1016/j.ceramint.2017.05.198.
[14] M. Harada, H. Takeda, S. Suzuki, K. Nakano, N. Tanibata, et al., Bayesian-optimization-guided experimental search of NASICON-type solid electrolytes for all-solid-state Li-ion batteries, J. Mater. Chem. A. 8 (2020) 15103–15109. https://doi.org/10.1039/D0TA04441E.
[15] H. Xu, S. Wang, H. Wilson, F. Zhao, A. Manthiram, Y-Doped NASICON-type LiZr2(PO4)3 Solid Electrolytes for Lithium-Metal Batteries, Chem. Mater. 29 (2017) 7206–7212. https://doi.org/10.1021/acs.chemmater.7b01463.
[16] Y. Li, W. Zhou, X. Chen, X. Lü, Z. Cui, et al., Mastering the interface for advanced all-solid-state lithium rechargeable batteries, Proc. Natl. Acad. Sci. 113 (2016) 13313–13317. https://doi.org/10.1073/pnas.1615912113.
[17] S. Khatua, Y.B. Rao, K.R. Achary, L.N. Patro, Li-ion transport studies of NASICON-type LiZr2(PO4)3 solid electrolyte crystallizing in rhombohedral structure at room temperature, Surf. Interfaces. 41 (2023) 103212. https://doi.org/10.1016/j.surfin.2023.103212.
[18] S. Kumar, P. Balaya, Improved ionic conductivity in NASICON-type Sr2+ doped LiZr2(PO4)3, Solid State Ion. 296 (2016) 1–6. https://doi.org/10.1016/j.ssi.2016.08.012.
[19] V. Ramar, S. Kumar, S.R. Sivakkumar, P. Balaya, NASICON-type La3+substituted LiZr2(PO4)3 with improved ionic conductivity as solid electrolyte, Electrochim. Acta. 271 (2018) 120–126. https://doi.org/10.1016/j.electacta.2018.03.115.
[20] M. Catti, Lithium location in NASICON-type Li+ conductors by neutron diffraction. I. Triclinic α′-LiZr2(PO4)3, Solid State Ion. 123 (1999) 173–180. https://doi.org/10.1016/S0167-2738(99)00089-2.
[21] F.W. Aston, The isotopic constitution and atomic weights of hafnium, thorium, rhodium, titanium, zirconium, calcium, gallium, silver, carbon, nickel, cadmium, iron and indium, Proc. R. Soc. London. Ser. A - Math. Phys. Sci. 149 (1935) 396–405. https://doi.org/10.1098/rspa.1935.0070.
[22] V.M.S. Muthaiah, S. Mula, Effect of zirconium on thermal stability of nanocrystalline aluminium alloy prepared by mechanical alloying, J. Alloys Compd. 688 (2016) 571–580. https://doi.org/10.1016/j.jallcom.2016.07.038.
[23] M.E. Wieser, Atomic weights of the elements 2005 (IUPAC Technical Report), Pure Appl. Chem. 78 (2006) 2051–2066. https://doi.org/10.1351/pac200678112051.
[24] C. Boshui, D. Junxiu, C. Guoxu, Tribochemistry of gadolinium dialkyldithiophosphate, Wear. 196 (1996) 16–20. https://doi.org/10.1016/0043-1648(95)06821-X.
[25] D. Demirskyi, H. Borodianska, D. Agrawal, A. Ragulya, Y. Sakka, O. Vasylkiv, Peculiarities of the neck growth process during initial stage of spark-plasma, microwave and conventional sintering of WC spheres, J. Alloys Compd. 523 (2012) 1–10. https://doi.org/10.1016/j.jallcom.2012.01.146.
[26] M.I. Kimpa, M.Z.H. Mayzan, J.A. Yabagi, M.M. Nmaya, K.U. Isah, M.A. Agam, Review on Material Synthesis and Characterization of Sodium (Na) Super-Ionic Conductor (NASICON), IOP Conf. Ser. Earth Environ. Sci. 140 (2018) 012156. https://doi.org/10.1088/1755-1315/140/1/012156.
[27] A. Jonderian, E. McCalla, The role of metal substitutions in the development of Li batteries, part II: solid electrolytes, Mater. Adv. 2 (2021) 2846–2875. https://doi.org/10.1039/D1MA00082A.

Cited By

Crossref Google Scholar
Synthesis, sintering and electrical properties of Li1+xGdxZr2-x(PO4)3 solid electrolytes for Li-ion batteries
Submitted
2024-01-19
Available online
2025-03-30
How to Cite
Khakpour, Z., Sedaghat, S., Farvizi, M., Naderi, N., & Massoudi, A. (2025). Synthesis, sintering and electrical properties of Li1+xGdxZr2-x(PO4)3 solid electrolytes for Li-ion batteries. Synthesis and Sintering, 5(1), 82-92. https://doi.org/10.53063/synsint.2025.51205