A surface plasmon resonance biosensor for bacteria and virus detection: A Comsol Multiphysics simulation

  • Loujayn Ayache 1
  • Kiana Mahtabi Nourani 1
  • Shahla Azizi 1
  • 1 Department of Electrical and Electronics Engineering, Eastern Mediterranean University, Famagusta, via Mersin 10, Türkiye

Abstract

This study provides a comprehensive simulation-based investigation into the design and performance optimization of a surface plasmon resonance (SPR) biosensor. The main goal of this study is to improve sensitivity and accuracy by combining optical and colorimetric biosensing techniques. The biosensor is studied, examined, and simulated using Comsol Multiphysics. Sensing medium, black phosphorus, tungsten diselenide (WSe2), gold (Au), magnetite (Fe3O4), and N-BK7 glass as prism are the layers that make up the structure of the proposed sensor. The study evaluates various parameters such as electric potential distribution, surface temperatures, conductive heat flux, eigenfrequency, electric field norm, and temperature gradients. The use of WSe2 aims for a higher sensitivity for detecting biomolecules. This paper proves the effect of using Fe3O4 and WSe2 among the six layers of the sensor in increasing the selectivity and sensitivity of the SPR biosensor. The findings reveal intricate interactions between the biosensor layers, which influence its thermal and electromagnetic behavior. The findings of this study contribute to the advancement of SPR biosensor technology, which has the potential for a variety of applications in the biomedical field.

Downloads

Download data is not yet available.
Keywords: Tungsten diselenide, Sensitivity, Black phosphorus, SPR, Biomolecule detection

References

[1] S.A. Ozkan, B. Uslu, M. Kemal Sezgintürk, Biosensors. CRC Press, Boca Raton. (2022). https://doi.org/10.1201/9781003189435.
[2] H.H. Nguyen, J. Park, S. Kang, M. Kim, Surface plasmon resonance: a versatile technique for biosensor applications, Sensors (Basel). 15 (2015) 10481–510. https://doi.org/10.3390/s150510481.
[3] F. Fathi, R. Jalili, M. Amjadi, M.R. Rashidi, SPR signals enhancement by gold nanorods for cell surface marker detection, Bioimpacts. 9 (2019) 71–78. https://doi.org/10.15171/bi.2019.10.
[4] J. Loscalzo, A.-L. Barabasi, Systems biology and the future of medicine, WIREs Syst. Biol. Med. 3 (2011) 619–627. https://doi.org/10.1002/wsbm.144.
[5] R. Apweiler, T. Beissbarth, M.R. Berthold, N. Blüthgen, Y. Burmeister, et al., Whither systems medicine?, Exp. Mol. Med. 50 (2018) e453–e453. https://doi.org/10.1038/emm.2017.290.
[6] X. Song, Z. Fredj, Y. Zheng, H. Zhang, G. Rong, et al., Biosensors for waterborne virus detection: Challenges and Analysis, J. Pharm. Anal. 13 (2023) 1252–1268. https://doi.org/10.1016/j.jpha.2023.08.020.
[7] S.M.Z. Hossain, N. Mansour, Biosensors for on-line water quality monitoring – a review, Arab J. Basic Appl. Sci. 26 (2019) 502–518. https://doi.org/10.1080/25765299.2019.1691434.
[8] T.W. Graham Solomons, C.B. Fryhle, S.A. Snyder, Organic Chemistry, John Wiley & Sons. (2016).
[9] X. Wang, H. Yue, G. Liu, Z. Zhao, The Application of COMSOL Multiphysics in Direct Current Method Forward Modeling, Procedia Earth Planet. Sci. 3 (2011) 266–272. https://doi.org/10.1016/j.proeps.2011.09.093.
[10] W.B.J. Zimmerman, Multiphysics modeling with finite element methods: Vol. 18, World Scientific Publishing Company. (2006).
[11] A. Osmane, A.M. Hamza, Relativistic acceleration of Landau resonant particles as a consequence of Hopf bifurcations, Phys. Plasmas. 19 (2012) 030702. https://doi.org/10.1063/1.3692234.
[12] W. Hayt, J. Buck, Engineering electromagnetics, McGraw Hill. (2019).
[13] J.S. Murray, P. Politzer, The electrostatic potential: an overview, WIREs Comput. Mol. Sci. 1 (2011) 153–163. https://doi.org/10.1002/wcms.19.
[14] M.N.O. Sadiku, S. Nelatury, Elements of electromagnetics, Oxford University Press. (2020).
[15] G. Nellis, S. Klein, Heat transfer, Cambridge University Press. (2008).
[16] A. Camarca, A. Varriale, A. Capo, A. Pennacchio, A. Calabrese, et al., Emergent Biosensing Technologies Based on Fluorescence Spectroscopy and Surface Plasmon Resonance, Sensors. 21 (2021) 906. https://doi.org/10.3390/s21030906.
[17] A.S. Kushwaha, A. Kumar, R. Kumar, S.K. Srivastava, A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity, Photonics Nanostruct- Fundam. Appl. 31 (2018) 99–106. https://doi.org/10.1016/j.photonics.2018.06.003.
[18] L.B. Felsen, Evanescent waves, J. Opt. Soc. Am. 66 (1976) 751–760. https://doi.org/10.1364/JOSA.66.000751.
[19] N.K.Singh, P.D. Thungon, P. Estrela, P. Goswami, Development of an aptamer-based field effect transistor biosensor for quantitative detection of Plasmodium falciparum glutamate dehydrogenase in serum samples, Biosens. Bioelectron. 123 (2019) 30–35. https://doi.org/10.1016/j.bios.2018.09.085.
[20] J.R. Choi, K.W. Yong, J.Y. Choi, A. Nilghaz, Y. Lin, et al., Black Phosphorus and its Biomedical Applications, Theranostics. 8 (2018) 1005–1026. https://doi.org/10.7150/thno.22573.
[21] P. Jiang, Y. Wang, L. Zhao, C. Ji, D. Chen, L. Nie, Applications of gold nanoparticles in non-optical biosensors, Nanomaterials. 8 (2018) 977. https://doi.org/10.3390/nano8120977.
[22] C. Fairclough, Efficiently Mesh Your Model Geometry with Meshing Sequences, COMSOL Multiphysics. (2016).
[23] S. Kaziz, Y. Saad, M.H. Gazzah, H. Belmabrouk, 3D simulation of microfluidic biosensor for SARS-CoV-2 S protein binding kinetics using new reaction surface design, Europ. Phys. J. Plus. 137 (2022) 241. https://doi.org/10.1140/epjp/s13360-022-02470-8.
[24] N. Varnakavi., N. Lee, A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors, Sensors. 21 (2021) 1109. https://doi.org/10.3390/s21041109.
[25] N. Bibhu Prasad, P. Rani, P. Paul, N. Aman, S. Ganti Subrahmanya, R. Bhatia, Recent Trends and Impact of Localized Surface Plasmon Resonance (LSPR) and Surface-Enhanced Raman Spectroscopy (SERS) in Modern Analysis, J. Pharm. Anal. (2024). https://doi.org/10.1016/j.jpha.2024.02.

Cited By

Crossref Google Scholar
A surface plasmon resonance biosensor for bacteria and virus detection: A Comsol Multiphysics simulation
Submitted
2023-12-21
Available online
2024-06-26
How to Cite
Ayache, L., Mahtabi Nourani, K., & Azizi, S. (2024). A surface plasmon resonance biosensor for bacteria and virus detection: A Comsol Multiphysics simulation. Synthesis and Sintering, 4(2), 124-129. https://doi.org/10.53063/synsint.2024.42196