Effect of chemical composition on fabrication of HAp-YSZ-Ti composites by spark plasma sintering method

  • Seyyed Mohsen Fatemi 1
  • Iman Mobasherpour 1
  • Leyla Nikzad 1
  • Mansour Razavi 1
  • Leyla Karamzadeh 1
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

This research examines the thermal behavior and sintering characteristics of hydroxyapatite (HAp) composites with yttria-stabilized zirconia (YSZ) and titanium using the spark plasma sintering (SPS) method. This study uses simultaneous thermal analysis (STA) to investigate the decomposition behavior of composites. During the sintering process, data on displacement, temperature, time, and current were recorded. A key challenge encountered was the fracture and crushing of the samples after the sintering process. The results show that the decomposition temperature of pure HAp (sample 100-0-0) occurs around 800 °C. In contrast, adding 4% titanium and 6% YSZ to the sample composition increases the decomposition temperature above 1000 °C. A further increase in YSZ content, up to 31%, leads to a decomposition temperature of approximately 1000 °C. These findings show that the presence of titanium and its conversion to TiO2, together with YSZ, increases the stability of the composite materials and thus reduces HAp decomposition and affects the thermal behavior of the sintered samples.

Downloads

Download data is not yet available.
Keywords: Hydroxyapatite, Yttria-stabilized zirconia, Titanium, Spark plasma sintering, Simultaneous thermal analysis

References

[1] I. Antoniac, M. Negrusoiu, M. Mardare, C. Socoliuc, A. Zazgyva, M. Niculescu, Adverse local tissue reaction after 2 revision hip replacements for ceramic liner fracture, Medicine (Baltimore). 96 (2017) e6687. https://doi.org/10.1097/MD.0000000000006687.
[2] C. Tecu, A. Antoniac, G. Goller, M.G. Gok, M. Manole, A. Mohan, H. Moldovan, K. Earar, The sintering behaviour and mechanical properties of hydroxyapatite - based composites for bone tissue regeneration, Rev. Chim. 69 (2018) 1272–1275. https://doi.org/10.37358/RC.18.5.6306.
[3] B.I. Andrei, M. Niculescu, G. Popescu, Position of anterior cruciate ligament after single-bundle arthroscopic reconstruction, Int. Orthop. 40 (2016) 393–397. https://doi.org/10.1007/s00264-015-2964-7.
[4] O. Mishchenko, A. Yanovska, O. Kosinov, D. Maksymov, R. Moskalenko, et al., Synthetic calcium–phosphate materials for bone grafting, Polymers (Basel). 15 (2023) 3822. https://doi.org/10.3390/polym15183822.
[5] L. Karamzadeh, E. Salahi, I. Mobasherpour, A. Rajabi, M. Javaheri, Characterization of nano-hydroxyapatite synthesized from eggshells for absorption of heavy metals, Synth. Sinter. 3 (2023) 241–247. https://doi.org/10.53063/synsint.2023.34190.
[6] F. Anene, C. Jaafar, A. Mohamed Ariff, I. Zainol, S. Mohd Tahir, et al., Biomechanical properties and corrosion resistance of plasma-sprayed fish scale hydroxyapatite (FsHA) and FsHA-doped yttria-stabilized zirconia coatings on Ti–6Al–4V alloy for biomedical applications, Coatings. 13 (2023) 199. https://doi.org/10.3390/coatings13010199.
[7] T.V. Safronova, I.I. Selezneva, S.A. Tikhonova, A.S. Kiselev, G.A. Davydova, et al., Biocompatibility of biphasic α,β-tricalcium phosphate ceramics in vitro, Bioact. Mater. 5 (2020) 423–427. https://doi.org/10.1016/j.bioactmat.2020.03.007.
[8] C. Xu, Y. Sun, J. Jansen, M. Li, L. Wei, et al., Calcium phosphate ceramics and synergistic bioactive agents for osteogenesis in implant dentistry, Tissue Eng. Part C Methods. 29 (2023) 197–215. https://doi.org/10.1089/ten.tec.2023.0042.
[9] A. Jangjoo Tazeh Kand, F. Afaghi, A. Taghizadeh Tabrizi, H. Aghajani, H. Demir Kivrak, Electrochemical evaluation of the hydroxyapatite coating synthesized on the AZ91 by electrophoretic deposition route, Synth. Sinter. 1 (2021) 85–91. https://doi.org/10.53063/synsint.2021.1226.
[10] A.M. Abraham, S. Venkatesan, A critical review on biomaterials using powder metallurgy method, Eng. Res. Express. 6 (2024) 012508. https://doi.org/10.1088/2631-8695/ad35a6.
[11] K. Jaroszewska, B. Szczęśniak, B. Szyja, J. Choma, M. Jaroniec, Inorganic mesoporous oxides: From research to industrial applications, Mater. Today. 72 (2024) 255–281. https://doi.org/10.1016/j.mattod.2023.11.017.
[12] M.F. Zawrah, M.A. Taha, R.A. Youness, Advanced ceramics: stages of development, Springer Nature, Switzerland. (2024) 1–46. https://doi.org/10.1007/978-3-031-43918-6_1.
[13] M. Prakasam, J. Locs, K. Salma-Ancane, D. Loca, A. Largeteau, L. Berzina-Cimdina, Fabrication, properties and applications of dense hydroxyapatite: a review, J. Funct. Biomater. 6 (2015) 1099–1140. https://doi.org/10.3390/jfb6041099.
[14] M. Furko, K. Balázsi, C. Balázsi, Calcium phosphate loaded biopolymer composites—a comprehensive review on the most recent progress and promising trends, Coatings. 13 (2023) 360. https://doi.org/10.3390/coatings13020360.
[15] D.O. Obada, S.A. Osseni, H. Sina, A.N. Oyedeji, K.A. Salami, et al., Hydroxyapatite materials-synthesis routes, mechanical behavior, theoretical insights, and artificial intelligence models: a review, J. Aust. Ceram. Soc. 59 (2023) 565–596. https://doi.org/10.1007/s41779-023-00854-2.
[16] A. Niakan, S. Ramesh, P. Ganesan, C.Y. Tan, J. Purbolaksono, et al., Sintering behaviour of natural porous hydroxyapatite derived from bovine bone, Ceram. Int. 41 (2015) 3024–3029. https://doi.org/10.1016/j.ceramint.2014.10.138.
[17] L. Vaiani, A. Boccaccio, A.E. Uva, G. Palumbo, A. Piccininni, et al., Ceramic materials for biomedical applications: an overview on properties and fabrication processes, J. Funct. Biomater. 14 (2023) 146. https://doi.org/10.3390/jfb14030146.
[18] Q. Li, C. Feng, Q. Cao, W. Wang, Z. Ma, et al., Strategies of strengthening mechanical properties in the osteoinductive calcium phosphate bioceramics, Regen. Biomater. 10 (2023) rbad013. https://doi.org/10.1093/rb/rbad013.
[19] C.R.D. Ferreira, A.A.G. Santiago, R.C. Vasconcelos, D.F.F. Paiva, F.Q. Pirih, et al., Study of microstructural, mechanical, and biomedical properties of zirconia/hydroxyapatite ceramic composites, Ceram. Int. 48 (2022) 12376–12386. https://doi.org/10.1016/j.ceramint.2022.01.102.
[20] J. Li, M. Fiato, Y. Wu, Transparent high entropy garnet ceramics by SPS, J. Eur. Ceram. Soc. 44 (2024) 7846–7854. https://doi.org/10.1016/j.jeurceramsoc.2024.05.063.
[21] M. Sakkaki, M. Foroutani, P. Zare, Effects of die geometry and insulation on the energy and electrical parameters analyses of spark plasma sintered TiC ceramics, Synth. Sinter. 4 (2024) 4–16. https://doi.org/10.53063/synsint.2024.41172.
[22] S. Otake, H. Sakaguchi, Y. Yoshikawa, T. Kato, D. Nakauchi, et al., Concentration dependence on scintillation properties of BaCl2:Yb transparent ceramics prepared by SPS method, Opt. Mater. (Amst). 154 (2024) 115747. https://doi.org/10.1016/j.optmat.2024.115747.
[23] P. Golmohammadi, A. Bahmani, N. Parvin, B. Nayebi, On the synthesis and sintering behavior of a novel Mg-Ca alloy, Part II: Spark plasma sintering, Synth. Sinter. 4 (2024) 154–159. https://doi.org/10.53063/synsint.2024.42194.
[24] S. Zhang, Z. Teng, L. Wu, C. Chen, Y. Tan, X. Zhou, Rapid preparation of traditional and high-entropy garnet ceramics by SPS at low temperature with ultrafast densification, Ceram. Int. 50 (2024) 4573–4580. https://doi.org/10.1016/j.ceramint.2023.11.197.
[25] Y. Le Godec, S. Le Floch, Recent developments of high-pressure spark plasma sintering: an overview of current applications, challenges and future directions, Materials (Basel). 16 (2023) 997. https://doi.org/10.3390/ma16030997.
[26] X.Y. Li, Z.H. Zhang, X.W. Cheng, G.J. Huo, S.Z. Zhang, Q. Song, The development and application of spark plasma sintering technique in advanced metal structure materials: A review, Powder Metall. Met. Ceram. 60 (2021) 410–438. https://doi.org/10.1007/s11106-021-00254-w.
[27] M. Abedi, S. Sovizi, A. Azarniya, D. Giuntini, M.E. Seraji, et al., An analytical review on Spark Plasma Sintering of metals and alloys: from processing window, phase transformation, and property perspective, Crit. Rev. Solid State Mater. Sci. 48 (2023) 169–214. https://doi.org/10.1080/10408436.2022.2049441.
[28] T.M. Vidyuk, M.A. Korchagin, D.V. Dudina, B.B. Bokhonov, Synthesis of ceramic and composite materials using a combination of self-propagating high-temperature synthesis and spark Plasma sintering (review), Combust. Explos. Shock Waves. 57 (2021) 385–397. https://doi.org/10.1134/S0010508221040018.
[29] X. Li, Z. Guo, Q. Huang, C. Yuan, Research and application of biomimetic modified ceramics and ceramic composites: A review, J. Am. Ceram. Soc. 107 (2024) 663–697. https://doi.org/10.1111/jace.19490.
[30] M. Tokita, Progress of spark plasma sintering (SPS) method, systems, ceramics applications and industrialization, Ceramics. 4 (2021) 160–198. https://doi.org/10.3390/ceramics4020014.
[31] Z. Ebrahimi Kahoo, N. Akrami, M. Ghanad, S. Nazarnezhad, S. Kargozar, S. Mollazadeh, The effect of chemical composition on sintering process and microstructural, mechanical, and biological properties of hydroxyapatite/borate glass composites, J. Met. Mater. Eng. 33 (2022) 111–132. https://doi.org/10.22067/jmme.2022.73523.1032.
[32] S. Salehi, M.H. Fathi, K. Raeissi, Fabrication and characterization of nanostructured hydroxyapatite (HA)/ yttria stabilized zirconia (YSZ) composite coatings with various contents of yttria, J. Adv. Mater. Eng. 29 (2010) 31–43.
[33] Z. Ahmadi, M. Shahedi Asl, M. Zakeri, M. Farvizi, On the reactive spark plasma sinterability of ZrB2–SiC–TiN composite, J. Alloys Compd. 909 (2022) 164611. https://doi.org/10.1016/j.jallcom.2022.164611.

Cited By

Crossref Google Scholar
Effect of chemical composition on fabrication of HAp-YSZ-Ti composites by spark plasma sintering method
Submitted
2023-12-17
Available online
2024-08-14
How to Cite
Fatemi, S. M., Mobasherpour, I., Nikzad, L., Razavi, M., & Karamzadeh, L. (2024). Effect of chemical composition on fabrication of HAp-YSZ-Ti composites by spark plasma sintering method. Synthesis and Sintering, 4(3), 160-166. https://doi.org/10.53063/synsint.2024.43193