Effects of cerium oxide and cerium sulfate on the optical behavior of synthesized garnet glass ceramics

  • A. Faeghinia 1
  • 1 Department of Ceramics, Materials and Energy Research Center, Karaj, Iran


In this study, YAG silicate glasses were prepared by incorporating cerium sulfate and cerium oxide salts (composition: 17YO3-33Al2O3-40SiO2-2AlF3-3NaF-2CeO2-3B2O3) using the melting method. Subsequently, glass ceramics were obtained through heat treatment of the base glasses. According to the photoluminescence spectra of both glasses, emissions were observed at wavelengths of 466 nm and 435 nm, attributed to cerium ions. It was shown that the garnet crystals formed less during the heat treatment process in the sample containing cerium sulfate compared to the sample with cerium oxide. The emission spectra of both glass-ceramics, when excited at 240 nm, fall within the wavelength range of 460 nm. Also, emissions at wavelengths of 534 nm and 660 nm were observed under excitation at 340 nm. Heat treatments were conducted using three methods: in an oxide atmosphere using a tubular furnace (single-step), via spark plasma sintering (SPS) of powder, and in a hydrogen atmosphere (with two-steps heating). According to the XRD results, the entry of cerium into the garnet structure was affected by the heat treatment duration of 24 h and the temperature of 1060 °C. Finally, by comparing the spectroscopic results, it was found that the optical response of the garnet glass-ceramic synthesized in the hydrogen atmosphere occurred at a wavelength of 400 nm, suggesting its potential application in the LED industry.


Download data is not yet available.
Keywords: YAG, Glass ceramic, Luminescence, Cerium, Spark plasma sintering, Synthesis


[1] A. Faeghinia, Impact of bridging oxygens formation on optical properties of Fe3+ doped Li2O–Al2O3–SiO2–TiO2 glasses, Synth. Sinter. 2 (2022) 14–19. https://doi.org/10.53063/synsint.2022.2179.
[2] X. Sun, J. Wen, Q. Guo, F. Pang, Z. Chen, et al., Fluorescence properties and energy level structure of Ce-doped silica fiber materials, Opt. Mater. Express. 7 (2017) 751. https://doi.org/10.1364/OME.7.000751.
[3] H. Hua, S. Feng, Z. Ouyang, H. Shao, H. Qin, et al., YAGG:Ce transparent ceramics with high luminous efficiency for solid-state lighting application, J. Adv. Ceram. 8 (2019) 389–398. https://doi.org/10.1007/s40145-019-0321-9.
[4] N.K. Giri, N. Agnihotri, R. Prakash, Ceramic-based upconversion phosphors, in: Upconversion Nanophosphors, Elsevier. (2022) 181–202. https://doi.org/10.1016/B978-0-12-822842-5.00008-X.
[5] I. Ahemen, K.D. Dilip, A.N. Amah, A review of solid state white light emitting diode and its potentials for replacing conventional lighting technologies in developing countries, Appl. Phys. Res. 6 (2014) 95–108. https://doi.org/10.5539/apr.v6n2p95.
[6] Y. Pan, M. Wu, Q. Su, Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor, Mater. Sci. Eng. B. 106 (2004) 251–256. https://doi.org/10.1016/j.mseb.2003.09.031.
[7] M. Gong, X. Liang, Y. Wang, H. Xu, L. Zhang, W. Xiang, Novel synthesis and optical characterization of phosphor-converted WLED employing Ce:YAG-doped glass, J. Alloys Compd. 664 (2016) 125–132. https://doi.org/10.1016/j.jallcom.2015.12.239.
[8] Y. Zhuang, C. Li, C. Liu, Y. Fu, Q. Shi, et al., High-efficiency YAG:Ce3+ glass-ceramic phosphor by an organic-free screen-printing technique for high-power WLEDs, Opt. Mater. (Amst). 107 (2020) 110118. https://doi.org/10.1016/j.optmat.2020.110118.
[9] M. Jia, J. Wen, W. Luo, Y. Dong, F. Pang, et al., Improved scintillating properties in Ce:YAG derived silica fiber with the reduction from Ce4+ to Ce3+ ions, J. Lumin. 221 (2020) 117063. https://doi.org/10.1016/j.jlumin.2020.117063.
[10] J. Kalahe, M.P. Stone, P.D. Dragic, J. Ballato, J. Du, The structures and properties of yttrium aluminosilicate glasses with low, medium, and high silica contents, J. Non. Cryst. Solids. 614 (2023) 122394. https://doi.org/10.1016/j.jnoncrysol.2023.122394.
[11] X. He, X. Liu, R. Li, B. Yang, K. Yu, et al., Effects of local structure of Ce3+ ions on luminescent properties of Y3Al5O12:Ce nanoparticles, Sci. Rep. 6 (2016) 22238. https://doi.org/10.1038/srep22238.
[12] D.Y. Kosyanov, X. Liu, A.A. Vornovskikh, A.P. Zavjalov, A.M. Zakharenko, et al., Al2O3–Ce:YAG composite ceramics for high brightness lighting: Cerium doping effect, J. Alloys Compd. 887 (2021) 161486. https://doi.org/10.1016/j.jallcom.2021.161486.
[13] R. Marin, G. Sponchia, P. Riello, R. Sulcis, F. Enrichi, Photoluminescence properties of YAG:Ce3+,Pr3+ phosphors synthesized via the Pechini method for white LEDs, J. Nanoparticle Res. 14 (2012) 886. https://doi.org/10.1007/s11051-012-0886-5.
[14] L. Wang, L. Mei, G. He, G. Liu, J. Li, L. Xu, Crystallization and fluorescence properties of Ce:YAG glass-ceramics with low SiO2 content, J. Lumin. 136 (2013) 378–382. https://doi.org/10.1016/j.jlumin.2012.12.019.
[15] L. Wang, L. Mei, G. He, J. Li, L. Xu, Preparation of Ce:YAG Glass‐Ceramics with Low SiO2, J. Am. Ceram. Soc. 94 (2011) 3800–3803. https://doi.org/10.1111/j.1551-2916.2011.04700.x.
[16] S.F. Wang, J. Zhang, D.W. Luo, F. Gu, D.Y. Tang, et al., Transparent ceramics: Processing, materials and applications, Prog. Solid State Chem. 41 (2013) 20–54. https://doi.org/10.1016/j.progsolidstchem.2012.12.002.
[17] E.H. Penilla, Y. Kodera, J.E. Garay, Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD), Mater. Sci. Eng. B. 177 (2012) 1178–1187. https://doi.org/10.1016/j.mseb.2012.05.026.
[18] A. Faeghinia, H. Nuranian, M. Eslami, Synthesis of magnetite-silica-carbon quantum dot nanocomposites for melatonin drug delivery, Synth. Sinter. 3 (2023) 79–87. https://doi.org/10.53063/synsint.2023.32142.
[19] V.D. Paygin, A.E. Ilela, D.E. Deulina, G. V Lyamina, S.A. Stepanov, et al., Spark plasma sintering of transparent YAG:Ce ceramics with LiF flux, J. Phys. Conf. Ser. 1989 (2021) 012008. https://doi.org/10.1088/1742-6596/1989/1/012008.
[20] B. Priyadarshini, U. Anjaneyulu, U. Vijayalakshmi, Preparation and characterization of sol-gel derived Ce4+ doped hydroxyapatite and its in vitro biological evaluations for orthopedic applications, Mater. Des. 119 (2017) 446–455. https://doi.org/10.1016/j.matdes.2017.01.095.
[21] M. Cieslikiewicz-Bouet, H. El Hamzaoui, Y. Ouerdane, R. Mahiou, G. Chadeyron, et al., Investigation of the incorporation of cerium ions in MCVD-silica glass preforms for remote optical fiber radiation dosimetry, Sensors. 21 (2021) 3362. https://doi.org/10.3390/s21103362.
[22] R. Zhou, C. Calahoo, Y. Ding, L. Wondraczek, Role of Ag+ ions in determining Ce3+ optical properties in fluorophosphate and sulfophosphate glasses, ACS Omega. 6 (2021) 30093–30107. https://doi.org/10.1021/acsomega.1c04933.
[23] W.W. Wendlandt, The thermal decomposition of yttrium and the rare earth metal sulphate hydrates, J. Inorg. Nucl. Chem. 7 (1958) 51–54. https://doi.org/10.1016/0022-1902(58)80026-3.
[24] U. Berwal, V. Singh, R. Sharma, Effect of Ce4+→Ce3+ conversion on the structural and luminescence properties of Ce4+ doped Gd2Ti2O7 pyrochlore oxide, J. Lumin. 257 (2023) 119687. https://doi.org/10.1016/j.jlumin.2023.119687.
[25] H. Tagawa, Thermal decomposition temperatures of metal sulfates, Thermochim. Acta. 80 (1984) 23–33. https://doi.org/10.1016/0040-6031(84)87181-6.
[26] E. Allahkarami, B. Rezai, A literature review of cerium recovery from different aqueous solutions, J. Environ. Chem. Eng. 9 (2021) 104956. https://doi.org/10.1016/j.jece.2020.104956.
[27] A. Yusuf, A. Giwa, J.O. Eniola, H.K. Amusa, M.R. Bilad, Recent advances in catalytic sulfate radical-based approach for removal of emerging contaminants, J. Hazard. Mater. Adv. 7 (2022) 100108. https://doi.org/10.1016/j.hazadv.2022.100108.
[28] P. Meshram, Abhilash, Recovery and recycling of cerium from primary and secondary resources- a critical review, Miner. Process. Extr. Metall. Rev. 41 (2020) 279–310. https://doi.org/10.1080/08827508.2019.1677647.
[29] J.F. Olorunyomi, J.F. White, T.R. Gengenbach, R.A. Caruso, C.M. Doherty, Fabrication of a reusable carbon dot/gold nanoparticle/metal–organic framework film for fluorescence detection of lead ions in water, ACS Appl. Mater. Interfaces. 14 (2022) 35755–35768. https://doi.org/10.1021/acsami.2c09122.
[30] S. Foteinopoulou, G.C.R. Devarapu, G.S. Subramania, S. Krishna, D. Wasserman, Phonon-polaritonics: enabling powerful capabilities for infrared photonics, Nanophotonics. 8 (2019) 2129–2175. https://doi.org/10.1515/nanoph-2019-0232.
[31] B.M. Walsh, N.P. Barnes, D.J. Reichle, S. Jiang, Optical properties of Tm3+ ions in alkali germanate glass, J. Non. Cryst. Solids. 352 (2006) 5344–5352. https://doi.org/10.1016/j.jnoncrysol.2006.08.029.
[32] V. Tucureanu, A. Matei, A.M. Avram, Synthesis and characterization of YAG:Ce phosphors for white LEDs, Opto-Electron. Rev. 23 (2015) 239–251. https://doi.org/10.1515/oere-2015-0038.
[33] Z. Song, C. Kuenzer, Spectral reflectance (400–2500 nm) properties of coals, adjacent sediments, metamorphic and pyrometamorphic rocks in coal-fire areas: A case study of Wuda coalfield and its surrounding areas, northern China, Int. J. Coal Geol. 171 (2017) 142–152. https://doi.org/10.1016/j.coal.2017.01.008.
[34] J. Liang, B. Devakumar, L. Sun, S. Wang, Q. Sun, X. Huang, Full-visible-spectrum lighting enabled by an excellent cyan-emitting garnet phosphor, J. Mater. Chem. C. 8 (2020) 4934–4943. https://doi.org/10.1039/D0TC00006J.

Cited By

Crossref Google Scholar
Effects of cerium oxide and cerium sulfate on the optical behavior of synthesized garnet glass ceramics
How to Cite
Faeghinia, A. (2024). Effects of cerium oxide and cerium sulfate on the optical behavior of synthesized garnet glass ceramics. Synthesis and Sintering, 4(1), 29-40. https://doi.org/10.53063/synsint.2024.41186