A TEM study of nanostructures and interfaces in the hot-press sintered ZrB2–SiC–Si3N4 composites

  • Vladimir Bazhin 1
  • Aleksander Nikolaev 2
  • Valeria Esthefania Quiroz Cabascango 3
  • Changjin Shao 4
  • Genrih Davletov 2
  • Tatyana Gizatullina 2
  • Vadim Fetisov 2
  • 1 Department of Metallurgy, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
  • 2 Department of Petroleum Engineering, Empress Catherine II Saint Petersburg Mining University, Saint Petersburg, Russia
  • 3 Independent Researcher, Quito, Ecuador
  • 4 Department of Petroleum Engineering, China University of Petroleum-Beijing 18, Fuxue Road, Changping District, Beijing 102249, China

Abstract

A fully dense ZrB2–30 vol% SiC composite containing 5 wt% Si3N4 and 4 wt% phenolic resin (1.6 wt% carbon) was sintered using the hot-pressing route under the external pressure of 10 MPa at 1900 ºC for 2 h. The microstructural evolution and interfacial phenomena were scrutinized using advanced microscopy facilities such as high-resolution transmission electron microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The FESEM images showed the ZrB2 and SiC grains without any evidence of Si3N4. The formation of the hexagonal BN (hBN) phase was proven in the sintered composite. The hBN nanosheets had a graphite-like morphology with an average thickness of 20 nm. This phase has a perpendicular orientation to the pressure direction and prevents abnormal ZrB2 grain growth. Two types of ZrB2/SiC interfaces were detected, which exhibited an amorphous phase along with the grain boundary and a clean/smooth interface, resulting from the Si3N4 addition. HRTEM and inverse fast Fourier transform (IFFT) observations disclosed that the d-spacing value in the ZrB2 grain (0.335 nm) is higher than those reported in the literature. Furthermore, it was found that the exerted pressure during the sintering distorted atomic planes. The presence of numerous dislocations within the ZrB2 grains confirmed dislocation creep as the main densification mechanism.

Downloads

Download data is not yet available.
Keywords: ZrB2–SiC ceramics, Si3N4 additive, Hot-pressing, Interface, Microstructure, Dislocation

References

[1] A. Shima, M. Kazemi, Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics, Synth. Sinter. 3 (2023) 46–53. https://doi.org/10.53063/synsint.2023.31133.
[2] J. Meng, H. Fang, H. Wang, Y. Wu, C. Wei, et al., Effects of refractory metal additives on diboride‐based ultra‐high temperature ceramics: A review, Int. J. Appl. Ceram. Technol. 20 (2023) 1350–1370. https://doi.org/10.1111/ijac.14336.
[3] M. Ghasilzadeh Jarvand, Z. Balak, Oxidation response of ZrB2–SiC–ZrC composites prepared by spark plasma sintering, Synth. Sinter. 2 (2022) 191–197. https://doi.org/10.53063/synsint.2022.24134.
[4] S. Zhu, G. Zhang, Y. Bao, D. Sun, Q. Zhang, et al., Progress in preparation and ablation resistance of ultra-high-temperature ceramics modified C/C composites for extreme environment, Rev. Adv. Mater. Sci. 62 (2023) 20220276. https://doi.org/10.1515/rams-2022-0276.
[5] H. Istgaldi, M. Mehrabian, F. Kazemi, B. Nayebi, Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive, Synth. Sinter. 2 (2022) 67–77. https://doi.org/10.53063/synsint.2022.22107.
[6] S. Kim, Y. Oh, L.S. Min, Transmission Electron Microscopy Investigation of Hot-pressed ZrB2-SiC with B4C Additive, J. Korean Ceram. Soc. 52 (2015) 6–11. https://doi.org/10.4191/kcers.2015.52.6.462.
[7] E. Dodi, Z. Balak, H. Kafashan, Oxidation-affected zone in the sintered ZrB2–SiC–HfB2 composites, Synth. Sinter. 2 (2022) 31–37. https://doi.org/10.53063/synsint.2022.21111.
[8] F. Monteverde, S. Guicciardi, A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater. Sci. Eng. A. 346 (2003) 310–319. https://doi.org/10.1016/S0921-5093(02)00520-8.
[9] S. Kim, J.-M. Chae, S.-M. Lee, Y.-S. Oh, H.-T. Kim, B.-K. Jang, Change in microstructures and physical properties of ZrB2–SiC ceramics hot-pressed with a variety of SiC sources, Ceram. Int. 40 (2014) 3477–3483. https://doi.org/10.1016/j.ceramint.2013.09.082.
[10] G. Zhang, Z. Deng, N. Kondo, J. Yang, T. Ohji, Reactive Hot Pressing of ZrB2–SiC Composites, J. Am. Ceram. Soc. 32 (2000) 2330–2332. https://doi.org/10.1111/j.1151-2916.2000.tb01558.x.
[11] S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Spark plasma sintering of ceramic matrix composite of ZrB2 and TiB2: microstructure, densification, and mechanical properties—A review, Met. Mater. Int. 27 (2021) 2146–2159. https://doi.org/10.1007/s12540-020-00874-8.
[12] S.C. Zhang, G.E. Hilmas, W.G. Fahrenholtz, Pressureless Sintering of ZrB2–SiC Ceramics, Am. Ceram. Soc. 32 (2008) 26–32. https://doi.org/10.1111/j.1551-2916.2007.02006.x.
[13] R. Zhang, R. He, X. Zhang, D. Fang, Microstructure and mechanical properties of ZrB2–SiC composites prepared by gelcasting and pressureless sintering, Int . J. Refract. Met. Hard Mater. 43 (2014) 83–88. https://doi.org/10.1016/j.ijrmhm.2013.11.008.
[14] D. Sciti, L. Silvestroni, V. Medri, S. Guicciardi, Pressureless sintered in situ toughened ZrB2–SiC platelets ceramics, J. Eur. Ceram. Soc. 31 (2011) 2145–2153. https://doi.org/10.1016/j.jeurceramsoc.2011.04.040.
[15] X. Wang, W. Guo, G. Zhang, Pressureless sintering mechanism and microstructure of ZrB2–SiC ceramics doped with boron, Scr. Mater. 61 (2009) 177–180. https://doi.org/10.1016/j.scriptamat.2009.03.030.
[16] R. Inoue, Y. Arai, Y. Kubota, Y. Kogo, K. Goto, Initial oxidation behaviors of ZrB2-SiC-ZrC ternary composites above 2000 °C, J. Alloys Compd. 731 (2018) 310–317. https://doi.org/10.1016/j.jallcom.2017.10.034.
[17] C. Ojalvo, F. Guiberteau, A.L. Ortiz, Fabricating toughened super-hard B4C composites at lower temperature by transient liquid-phase assisted spark plasma sintering with MoSi2 additives, J. Eur. Ceram. Soc. 39 (2019) 2862–2873. https://doi.org/10.1016/j.jeurceramsoc.2019.03.035.
[18] J. Zou, G.J. Zhang, G.J. Hu, T. Nishimura, Y. Sakka, et al., Strong ZrB2–SiC–WC Ceramics at 1600 °C, J. Am. Ceram. Soc. 878 (2012) 874–878. https://doi.org/10.1111/j.1551-2916.2011.05062.x.
[19] W. Wu, G. Zhang, Y. Kan, Y. Sakka, Synthesis, microstructure and mechanical properties of reactively sintered ZrB2–SiC–ZrN composites, Ceram. Int. 39 (2013) 7273–7277. https://doi.org/10.1016/j.ceramint.2013.02.028.
[20] F. Monteverde, A. Bellosi, Efficacy of HfN as sintering aid in the manufacture of ultrahigh-temperature metal diborides-matrix ceramics, J. Mater. Res. 19 (2004) 3576–3585. https://doi.org/10.1557/JMR.2004.0460.
[21] Y. Yang, M. Li, L. Xu, J. Xu, Y. Qian, et al., Oxidation behaviours of ZrB2-SiC-MoSi2 composites at 1800 °C in air with different pressures, Corros. Sci. 157 (2019) 87–97. https://doi.org/10.1016/j.corsci.2019.05.027.
[22] L. Silvestroniw, D. Sciti, Densification of ZrB2–TaSi2 and HfB2–TaSi2 Ultra-High-Temperature Ceramic Composites, Am. Ceram. Soc. 1930 (2011) 1920–1930. https://doi.org/10.1111/j.1551-2916.2010.04317.x.
[23] O.N. Grigoriev, B.A. Galanov, V.A. Lavrenko, A.D. Panasyuk, S.M. Ivanov, et al., Oxidation of ZrB2–SiC–ZrSi2 ceramics in oxygen, J. Eur. Ceram. Soc. 30 (2010) 2397–2405. https://doi.org/10.1016/j.jeurceramsoc.2010.03.016.
[24] X. Zhang, W. Li, C. Hong, W. Han, J. Han, A novel development of ZrB2/ZrO2 functionally graded ceramics for ultrahigh-temperature application, Scr. Mater. 59 (2008) 1214–1217. https://doi.org/10.1016/j.scriptamat.2008.08.014.
[25] X. Zhang, X. Li, J. Han, W. Han, C. Hong, Effects of Y2O3 on microstructure and mechanical properties of ZrB2–SiC ceramics, J. Alloys Compd. 465 (2008) 506–511. https://doi.org/10.1016/j.jallcom.2007.10.137.
[26] M. Shahedi, B. Nayebi, M. Ghassemi, M. Shokouhimehr, Investigation of hot pressed ZrB2–SiC–carbon black nanocomposite by scanning and transmission electron microscopy, Ceram. Int. 45 (2019) 16759–16764. https://doi.org/10.1016/j.ceramint.2019.05.211.
[27] F. Yang, X. Zhang, J. Han, S. Du, Mechanical properties of short carbon fiber reinforced ZrB2–SiC ceramic matrix composites, Mater. Lett. 62 (2008) 2925–2927. https://doi.org/10.1016/j.matlet.2008.01.076.
[28] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites, Mater. Charact. 110 (2015) 77–85. https://doi.org/10.1016/j.matchar.2015.10.016.
[29] N. Pourmohammadie, M. Ghassemi, M. Shahedi, Role of h-BN content on microstructure and mechanical properties of hot-pressed ZrB2–SiC composites, Ceram. Int. 46 (2020) 21533–21541. https://doi.org/10.1016/j.ceramint.2020.05.255.
[30] S.K. Thimmappa, B.R. Golla, V.V.B. Prasad, B. Majumdar, B. Basu, Phase stability, hardness and oxidation behaviour of spark plasma sintered, Ceram. Int. 45 (2019) 9061–9073. https://doi.org/10.1016/j.ceramint.2019.01.243.
[31] M. Mallik, K.K. Ray, R. Mitra, Effect of Si3N4 Addition on Compressive Creep Behavior of Hot-Pressed ZrB2–SiC Composites, J. Am. Ceram. Soc. 2964 (2014) 2957–2964. https://doi.org/10.1111/jace.13022.
[32] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, et al., Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[33] M.D. Alvari, M.G. Kakroudi, B. Salahimehr, R. Alaghmandfard, M.S. Asl, M. Mohammadi, Microstructure, mechanical properties, and oxidation behavior of hot-pressed ZrB2– SiC–B4C composites, Ceram. Int. 47 (2020) 9627–9634. https://doi.org/10.1016/j.ceramint.2020.12.101.
[34] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, I. Farahbakhsh, Sintering behavior of ZrB2–SiC composites doped with Si3N4: a fractographical approach, Ceram. Int. 43 (2017) 9699–9708. https://doi.org/10.1016/j.ceramint.2017.04.144.
[35] T.T. Yoichi Kubota, K. Watanabe, Osamu Tsuda, Deep Ultraviolet Light–Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure, Science. 317 (2007) 932–935. https://doi.org/10.1126/science.1144216.
[36] N. Ooi, V. Rajan, J. Gottlieb, Y. Catherine, J.B. Adams, Structural properties of hexagonal boron nitride, Model. Simul. Mater. Sci. Eng. 14 (2006) 515–535. https://doi.org/10.1088/0965-0393/14/3/012.
[37] Z. Zhang, Y. Liu, Y. Yang, B.I. Yakobson, Growth Mechanism and Morphology of Hexagonal Boron Nitride, Nano Lett. 16 (2016) 1398–1403. https://doi.org/10.1021/acs.nanolett.5b04874.
[38] C. Xia, S.A. Delbari, Z. Ahmadi, M. Shahedi Asl, M. Ghassemi Kakroudi, et al., Electron microscopy study of ZrB2–SiC–AlN composites: Hot-pressing vs. pressureless sintering, Ceram. Int. 46 (2020) 29334–29338. https://doi.org/10.1016/j.ceramint.2020.08.054.
[39] C. Hu, Y. Sakka, J. Gao, H. Tanaka, S. Grasso, Microstructure characterization of ZrB2–SiC composite fabricated by spark plasma sintering with TaSi2 additive, J. Eur. Ceram. Soc. 32 (2012) 1441–1446. https://doi.org/10.1016/j.jeurceramsoc.2011.08.024.
[40] R.C. Li, Z. Bradt, Thermal Expansion of the Hexagonal (6H) Polytype of Silicon Carbide, J. Am. Ceram. Soc. 66 (1986) 863–866. https://doi.org/10.1111/j.1151-2916.1986.tb07385.x.
[41] N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, M. Yamaguchi, S. Otani, Temperature dependence of thermal expansion and elastic constants of single crystals of ZrB2 and the suitability of ZrB2 as a substrate for GaN film, J. Appl. Phys. 93 (2003) 88–93. https://doi.org/10.1063/1.1525404.
[42] H. Ma, J. Zou, J. Zhu, L. Liu, G. Zhang, Segregation of tungsten atoms at ZrB2 grain boundaries in strong ZrB2-SiC-WC ceramics, Scr. Mater. 157 (2018) 76–80. https://doi.org/10.1016/j.scriptamat.2018.07.038.
[43] J. Liang, Y. Wang, S. Meng, Interface and defect characterization in hot-pressed ZrB2-SiC ceramics, Int . J. Refract. Met. Hard Mater. 29 (2011) 341–343. https://doi.org/10.1016/j.ijrmhm.2010.12.010.
[44] Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, et al., Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride, Nat. Commun. 4 (2013) 1–8. https://doi.org/10.1038/ncomms3541.
[45] J. Gu, J. Zou, J. Liu, H. Wang, J. Zhang, et al., Sintering highly dense ultra-high temperature ceramics with suppressed grain growth, J. Eur. Ceram. Soc. 40 (2020) 1086–1092. https://doi.org/10.1016/j.jeurceramsoc.2019.11.056.
[46] M. Gendre, A. Maître, G. Trolliard, A study of the densification mechanisms during spark plasma sintering of zirconium (oxy-) carbide powders, Acta Mater. 58 (2010) 2598–2609. https://doi.org/10.1016/j.actamat.2009.12.046.

Cited By

Crossref Google Scholar
A TEM study of nanostructures and interfaces in the hot-press sintered ZrB2–SiC–Si3N4 composites
Submitted
2023-07-07
Available online
2023-12-29
How to Cite
Bazhin, V., Nikolaev, A., Quiroz Cabascango, V. E., Shao, C., Davletov, G., Gizatullina, T., & Fetisov, V. (2023). A TEM study of nanostructures and interfaces in the hot-press sintered ZrB2–SiC–Si3N4 composites. Synthesis and Sintering, 3(4), 275-281. https://doi.org/10.53063/synsint.2023.34165