Effects of pH and calcination temperature on gel-combustion synthesizability of BaZr0.8Y0.2O3 perovskite

  • Mohammad Reza Foroughi 1
  • Zahra Khakpour 1
  • Amir Maghsoudipour 1
  • 1 Ceramics Department, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

Solid oxide fuel cells with their advantages such as high efficiency are now considered as efficient power generation equipment. Because of its proton conductivity, perovskite is used in ceramic fuel cell electrolyte, and the addition of dopant can improve its proton conductivity. In this research, BaZr0.8-xSrxY0.2O3 (x=0, 0.05, 0.1, and 0.15) perovskites were synthesized by gel-combustion method. Barium nitrate, zirconium nitrate, yttrium nitrate, and strontium nitrate were used as raw materials. Based on DTA and TGA analyses, the required temperature for calcination was determined to be around 1000 °C. XRD and FTIR analyses were used to identify the phases. The synthesis was carried out under different conditions and the effects of pH and dopant percentage on the morphology and size of the particles were investigated by FESEM. The sintering process was completed at different temperatures and a relative density of 94% was obtained at 1470 °C.

Downloads

Download data is not yet available.
Keywords: Gel-combustion synthesis, Perovskite, X-ray diffraction, Sintering, Dopant

References

[1] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev. 104 (2004) 4245–4270. https://doi.org/10.1021/cr020730k.
[2] Z.P. Cano, D. Banham, S. Ye, A. Hintennach, J. Lu, et al., Batteries and fuel cells for emerging electric vehicle markets, Nat. Energy. 3 (2018) 279–289. https://doi.org/10.1038/s41560-018-0108-1.
[3] Z. Wang, X. Zhang, A. Rezazadeh, Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell, Energy Rep. 7 (2021) 2594–2604. https://doi.org/10.1016/j.egyr.2021.04.060.
[4] A.B. Stambouli, Fuel cells: The expectations for an environmental-friendly and sustainable source of energy, Renew. Sustain. Energy Rev. 15 (2011) 4507–4520. https://doi.org/10.1016/j.rser.2011.07.100.
[5] A. Sartbaeva, V.L. Kuznetsov, S.A. Wells, P.P. Edwards, Hydrogen nexus in a sustainable energy future, Energy Environ. Sci. 1 (2008) 79. https://doi.org/10.1039/b810104n.
[6] J. Milewski, J. Zdeb, A. Szczęśniak, A. Martsinchyk, J. Kupecki, O. Dybiński, Concept of a solid oxide electrolysis-molten carbonate fuel cell hybrid system to support a power-to-gas installation, Energy Convers. Manag. 276 (2023) 116582. https://doi.org/10.1016/j.enconman.2022.116582.
[7] M. Shen, F. Ai, H. Ma, H. Xu, Y. Zhang, Progress and prospects of reversible solid oxide fuel cell materials, IScience. 24 (2021) 103464. https://doi.org/10.1016/j.isci.2021.103464.
[8] K.A. Kuterbekov, A.V. Nikonov, K.Z. Bekmyrza, N.B. Pavzderin, A.M. Kabyshev, et al., Classification of solid oxide fuel cells, Nanomaterials. 12 (2022) 1059. https://doi.org/10.3390/nano12071059.
[9] M.B. Hanif, S. Rauf, M. Motola, Z.U.D. Babar, C.-J. Li, C.-X. Li, Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications, Mater. Res. Bull. 146 (2022) 111612. https://doi.org/10.1016/j.materresbull.2021.111612.
[10] S. Hossain, A.M. Abdalla, S.N.B. Jamain, J.H. Zaini, A.K. Azad, A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells, Renew. Sustain. Energy Rev. 79 (2017) 750–764. https://doi.org/10.1016/j.rser.2017.05.147.
[11] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production, Solid State Ion. 3–4 (1981) 359–363. https://doi.org/10.1016/0167-2738(81)90113-2.
[12] H. Iwahara, Proton conducting ceramics and their applications, Solid State Ion. 86–88 (1996) 9–15. https://doi.org/10.1016/0167-2738(96)00087-2.
[13] K. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ion. 125 (1999) 285–302. https://doi.org/10.1016/S0167-2738(99)00188-5.
[14] K. Katahira, Y. Kohchi, T. Shimura, H. Iwahara, Protonic conduction in Zr-substituted BaCeO3, Solid State Ion. 138 (2000) 91–98. https://doi.org/10.1016/S0167-2738(00)00777-3.
[15] S.V. Bhide, A.V. Virkar, Stability of BaCeO3‐based proton conductors in water‐containing atmospheres, J. Electrochem. Soc. 146 (1999) 2038–2044. https://doi.org/10.1149/1.1391888.
[16] X. Ma, J. Dai, H. Zhang, D.E. Reisner, Protonic conductivity nanostructured ceramic film with improved resistance to carbon dioxide at elevated temperatures, Surf. Coat. Technol. 200 (2005) 1252–1258. https://doi.org/10.1016/j.surfcoat.2005.07.099.
[17] A. D’Epifanio, E. Fabbri, E. Di Bartolomeo, S. Licoccia, E. Traversa, Design of BaZr0.8Y0.2O3–δ protonic conductor to improve the electrochemical performance in intermediate temperature solid oxide fuel cells (IT-SOFCs), Fuel Cells. 8 (2008) 69–76. https://doi.org/10.1002/fuce.200700045.
[18] J. Lu, L. Wang, L. Fan, Y. Li, L. Dai, H. Guo, Chemical stability of doped BaCeO3-BaZrO3 solid solutions in different atmospheres, J. Rare Earths. 26 (2008) 505–510. https://doi.org/10.1016/S1002-0721(08)60127-1.
[19] E. Fabbri, A. Depifanio, E. Dibartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba(Ce0.8−xZrx)Y0.2O3−δ protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ion. 179 (2008) 558–564. https://doi.org/10.1016/j.ssi.2008.04.002.
[20] Z. Zhong, Stability and conductivity study of the BaCe0.9−xZrxY0.1O2.95 systems, Solid State Ion. 178 (2007) 213–220. https://doi.org/10.1016/j.ssi.2006.12.007.
[21] A. Azad, J. Irvine, Synthesis, chemical stability and proton conductivity of the perovksites Ba(Ce,Zr)1−xScxO3−δ, Solid State Ion. 178 (2007) 635–640. https://doi.org/10.1016/j.ssi.2007.02.004.
[22] A. Magrez, Preparation, sintering, and water incorporation of proton conducting Ba0.99Zr0.8Y0.2O3: comparison between three different synthesis techniques, Solid State Ion. 175 (2004) 585–588. https://doi.org/10.1016/j.ssi.2004.03.045.
[23] Y. Guo, Y. Lin, R. Ran, Z. Shao, Zirconium doping effect on the performance of proton-conducting BaZryCe0.8−yY0.2O3−δ (0.0≤y≤0.8) for fuel cell applications, J. Power Sources. 193 (2009) 400–407. https://doi.org/10.1016/j.jpowsour.2009.03.044.
[24] K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO3–BaZrO3 solid solutions, Solid State Ion. 125 (1999) 355–367. https://doi.org/10.1016/S0167-2738(99)00196-4.
[25] H. Bae, G.M. Choi, Novel modification of anode microstructure for proton-conducting solid oxide fuel cells with BaZr0.8Y0.2O3−δ electrolytes, J. Power Sources. 285 (2015) 431–438. https://doi.org/10.1016/j.jpowsour.2015.03.090.
[26] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Protonic conduction in calcium, strontium and barium zirconates, Solid State Ion. 61 (1993) 65–69. https://doi.org/10.1016/0167-2738(93)90335-Z.
[27] P. Goharian, A. Aghaei, B. Eftekhari Yekta, S. Banijamali, Lithium ion conductivity, crystallization tendency, and microstructural evolution of LiZrxTi2-x(PO4)3 NASICON glass-ceramics (x = 0 - 0.4), Synth. Sinter. 3 (2023) 67–72. https://doi.org/10.53063/synsint.2023.32148.
[28] D. Kumar, R. Sagar Yadav, Monika, A. Kumar Singh, S. Bahadur Rai, Synthesis techniques and applications of perovskite materials, Perovskite Materials, Devices and Integration, IntechOpen. (2020). https://doi.org/10.5772/intechopen.86794.
[29] R. Pandey, A. Tiwari, A. Upadhyay, A.K. Singh, Phase coexistence and the structure of the morphotropic phase boundary region in (1−x)Bi(Mg1/2Zr1/2)O3–xPbTiO3 piezoceramics, Acta Mater. 76 (2014) 198–206. https://doi.org/10.1016/j.actamat.2014.05.023.
[30] I.O. Troyanchuk, N.V. Kasper, D.D. Khalyavin, H. Szymczak, R. Szymczak, M. Baran, Magnetic and electrical transport properties of orthocobaltites R0.5Ba0.5CoO3 (R = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy), Phys. Rev. B. 58 (1998) 2418–2421. https://doi.org/10.1103/PhysRevB.58.2418.
[31] L. Zhang, Z. Xu, L. Cao, X. Yao, Synthesis of BF–PT perovskite powders by high-energy ball milling, Mater. Lett. 61 (2007) 1130–1133. https://doi.org/10.1016/j.matlet.2006.06.069.
[32] A. Upadhyay, R. Pandey, A.K. Singh, Origin of ferroelectric P‐E loop in cubic compositions and structure of poled (1‐ x )Bi(Mg 1/2 Zr 1/2 )O3 ‐ x PbTiO3 piezoceramics, J. Am. Ceram. Soc. 100 (2017) 1743–1750. https://doi.org/10.1111/jace.14735.
[33] D. Kumar, C.B. Singh, N.K. Verma, A.K. Singh, Synthesis and structural investigations on multiferroic Ba1-xSrxMnO3 perovskite manganites, Ferroelectrics. 518 (2017) 191–195. https://doi.org/10.1080/00150193.2017.1360663.
[34] S. Yin, D. Chen, W. Tang, Combustion synthesis and luminescent properties of CaTiO3: Pr, Al persistent phosphors, J. Alloys Compd. 441 (2007) 327–331. https://doi.org/10.1016/j.jallcom.2006.09.120.
[35] A. Rajaeiyan, M.M. Bagheri-Mohagheghi, Comparison of sol-gel and co-precipitation methods on the structural properties and phase transformation of γ and α-Al2O3 nanoparticles, Adv. Manuf. 1 (2013) 176–182. https://doi.org/10.1007/s40436-013-0018-1.
[36] V.M. Andrade, R.J.C. Vivas, S.S. Pedro, J.C.G. Tedesco, A.L. Rossi, A.A. Coelho, D.L. Rocco, M.S. Reis, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality, Acta Mater. 102 (2016) 49–55. https://doi.org/10.1016/j.actamat.2015.08.080.
[37] S. Ahmadi, Synthesis and characterization of aluminum-yttrium perovskite powder using a co-precipitation technique, Synth. Sinter. 2 (2022) 170–175. https://doi.org/10.53063/synsint.2022.24135.
[38] R.-R. Pei, X. Chen, Y. Suo, T. Xiao, Q.-Q. Ge, et al., Synthesis of La0.85Sr0.15Ga0.8Mg0.2O3−δ powder by carbonate co-precipitation combining with azeotropic-distillation process, Solid State Ion. 219 (2012) 34–40. https://doi.org/10.1016/j.ssi.2012.05.022.
[39] V. Uskoković, M. Drofenik, Four novel co-precipitation procedures for the synthesis of lanthanum-strontium manganites, Mater. 28 (2007) 667–672. https://doi.org/10.1016/j.matdes.2005.07.002.
[40] T.-H. Cho, Y. Shiosaki, H. Noguchi, Preparation and characterization of layered LiMn1/3Ni1/3Co1/3O2 as a cathode material by an oxalate co-precipitation method, J. Power Sources. 159 (2006) 1322–1327. https://doi.org/10.1016/j.jpowsour.2005.11.080.
[41] A.B. Gaikwad, S.C. Navale, V. Samuel, A.V. Murugan, V. Ravi, A co-precipitation technique to prepare BiNbO4, MgTiO3 and Mg4Ta2O9 powders, Mater. Res. Bull. 41 (2006) 347–353. https://doi.org/10.1016/j.materresbull.2005.08.010.
[42] T. Imai, M.O. Masanori Okuyama, Y.H. Yoshihiro Hamakawa, PbTiO3 thin films deposited by laser ablation, Jpn. J. Appl. Phys. 30 (1991) 2163. https://doi.org/10.1143/JJAP.30.2163.
[43] Y. Li, X. Xu, C. Wang, C. Wang, F. Xie, et al., Investigation on thermal evaporated CH3NH3PbI3 thin films, AIP Adv. 5 (2015). https://doi.org/10.1063/1.4930545.
[44] Z. Yu, J. Ramdani, J.A. Curless, J.M. Finder, C.D. Overgaard, et al., Epitaxial perovskite thin films grown on silicon by molecular beam epitaxy, J. Vac. Sci. Technol. B. 18 (2000) 1653–1657. https://doi.org/10.1116/1.591445.
[45] B.S. Kwak, K. Zhang, E.P. Boyd, A. Erbil, B.J. Wilkens, Metalorganic chemical vapor deposition of BaTiO3 thin films, J. Appl. Phys. 69 (1991) 767–772. https://doi.org/10.1063/1.347362.
[46] C.J. Lu, H.M. Shen, Y.N. Wang, Preparation and crystallization of Pb(Zr 0.95 Ti 0.05 )O3 thin films deposited by radio-frequency magnetron sputtering with a stoichiometric ceramic target, Appl. Phys. A. 67 (1998) 253–258. https://doi.org/10.1007/s003390050767.
[47] B. Yang, J.Y. Wang, Y.M. Jia, Y. Huang, Preparation of PbTiO3 thin film by dc single-target magnetron sputtering, International Conference on Thin Film Physics and Applications. (1991) 725. https://doi.org/10.1117/12.47277.
[48] S.R. Pae, S. Byun, J. Kim, M. Kim, I. Gereige, B. Shin, Improving uniformity and reproducibility of hybrid perovskite solar cells via a low-temperature vacuum deposition process for NiOx hole transport layers, ACS Appl. Mater. Interfaces. 10 (2018) 534–540. https://doi.org/10.1021/acsami.7b14499.
[49] J.-S. Park, J.-H. Lee, H.-W. Lee, B.-K. Kim, Low temperature sintering of BaZrO3-based proton conductors for intermediate temperature solid oxide fuel cells, Solid State Ion. 181 (2010) 163–167. https://doi.org/10.1016/j.ssi.2009.06.015.
[50] H.P. Kumar, C. Vijayakumar, C.N. George, S. Solomon, R. Jose, et al., Characterization and sintering of BaZrO3 nanoparticles synthesized through a single-step combustion process, J. Alloys Compd. 458 (2008) 528–531. https://doi.org/10.1016/j.jallcom.2007.04.032.
[51] B. Bendjeriou-Sedjerari, J. Loricourt, D. Goeuriot, P. Goeuriot, Sintering of BaZrO3 and SrZrO3 perovskites: Role of substitutions by yttrium or ytterbium, J. Alloys Compd. 509 (2011) 6175–6183. https://doi.org/10.1016/j.jallcom.2011.02.088.
[52] F.J.A. Loureiro, N. Nasani, G.S. Reddy, N.R. Munirathnam, D.P. Fagg, A review on sintering technology of proton conducting BaCeO3-BaZrO3 perovskite oxide materials for Protonic Ceramic Fuel Cells, J. Power Sources. 438 (2019) 226991. https://doi.org/10.1016/j.jpowsour.2019.226991.
[53] D. Lahiri, V. Singh, G.R. Rodrigues, T.M.H. Costa, M.R. Gallas, et al., Ultrahigh-pressure consolidation and deformation of tantalum carbide at ambient and high temperatures, Acta Mater. 61 (2013) 4001–4009. https://doi.org/10.1016/j.actamat.2013.03.014.
[54] S. Wang, Y. Liu, J. He, F. Chen, K.S. Brinkman, Spark-plasma-sintered barium zirconate based proton conductors for solid oxide fuel cell and hydrogen separation applications, Int. J. Hydrog. Energy. 40 (2015) 5707–5714. https://doi.org/10.1016/j.ijhydene.2015.02.116.
[55] M. Mansoor, M. Mansoor, M. Mansoor, Z. Er, F. Çinar Şahin, Ab-initio study of paramagnetic defects in Mn and Cr doped transparent polycrystalline Al2O3 ceramics, Synth. Sinter. 1 (2021) 135–142. https://doi.org/10.53063/synsint.2021.1340.
[56] M.K.G. Abbas, S. Ramesh, K.Y.S. Lee, Y.H. Wong, P. Ganesan, et al., Effects of sintering additives on the densification and properties of alumina-toughened zirconia ceramic composites, Ceram. Int. 46 (2020) 27539–27549. https://doi.org/10.1016/j.ceramint.2020.07.246.
[57] A. Khan, A. Ali, I. Khan, Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3, Synth. Sinter. 1 (2021) 197–201. https://doi.org/10.53063/synsint.2021.1467.
[58] M. Mansoor, M. Mansoor, M. Mansoor, T. Themelis, F. Çinar Şahin, Sintered transparent polycrystalline ceramics: the next generation of fillers for clarity enhancement in corundum, Synth. Sinter. 1 (2021) 183–188. https://doi.org/10.53063/synsint.2021.1342.
[59] C.L. Gnanasagaran, K. Ramachandran, S. Ramesh, S. Ubenthiran, N.H. Jamadon, Effect of co-doping manganese oxide and titania on sintering behaviour and mechanical properties of alumina, Ceram. Int. 49 (2023) 5110–5118. https://doi.org/10.1016/j.ceramint.2022.10.027.
[60] P.A.N. Dias, N. Nasani, T.S. Horozov, D.P. Fagg, Non-aqueous stabilized suspensions of BaZr0.85Y0.15O3−δ proton conducting electrolyte powders for thin film preparation, J. Eur. Ceram. Soc. 33 (2013) 1833–1840. https://doi.org/10.1016/j.jeurceramsoc.2013.02.030.
[61] C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chemical aspects of solution routes to perovskite-phase mixed-metal oxides from metal-organic precursors, Chem. Rev. 93 (1993) 1205–1241. https://doi.org/10.1021/cr00019a015.

Cited By

Crossref Google Scholar
Effects of pH and calcination temperature on gel-combustion synthesizability of BaZr0.8Y0.2O3 perovskite
Submitted
2023-05-03
Available online
2023-06-29
How to Cite
Foroughi, M. R., Khakpour, Z., & Maghsoudipour, A. (2023). Effects of pH and calcination temperature on gel-combustion synthesizability of BaZr0.8Y0.2O3 perovskite. Synthesis and Sintering, 3(2), 132-142. https://doi.org/10.53063/synsint.2023.32153