Recent advances in machine learning algorithms for sintering processes

  • Shahla Azizi 1
  • 1 Department of Electrical and Electronic Engineering, Eastern Mediterranean University, Gazimağusa, Mersin 10, Türkiye

Abstract

Machine learning (ML) is a fast-growing field that has vast applications in different areas and sintering has had no exemption from that. In this paper, the application of ML methods in sintering of the various materials has been reviewed. Based on our review, it was used to optimize the sintering process and improve the characteristics of the final product. For instance, a supervised learning algorithm was used to predict the temperature and time based on the raw material properties and the desired properties of the final product in sintering. Among all ML methods, k-nearest neighbor (k-NN), random forest (RF), support vector machine (SVM), regression analysis (RA), and artificial neural networks (ANN) had great applications in the sintering field. There are a limited number of papers that used deep learning in sintering. In conclusion, ML methods can be used to optimize sintering process in energy, cost and time.

 

Downloads

Download data is not yet available.
Keywords: Machine learning, Neural networks, Sintering, Classification, Materials

References

[1] S.-J.L. Kang, Sintering Processes, Sintering Densification, Grain Growth, and Microstructure, Elsevier Butterworth-Heinemann, Amsterdam. (2005).
[2] A. Mallick, S. Dhara, S. Rath, Application of machine learning algorithms for prediction of sinter machine productivity, Mach. Learn. Appl. 6 (2021) 100186. https://doi.org/10.1016/j.mlwa.2021.100186.
[3] S. Du, M. Wu, L. Chen, W. Pedrycz, Prediction model of burn-through point with fuzzy time series for iron ore sintering process, Eng. Appl. Artif. Intell. 102 (2021) 104259. https://doi.org/10.1016/j.engappai.2021.104259.
[4] H.B. Ly, E. Monteiro, T.T. Le, V.M. Le, M. Dal, et al., Prediction and sensitivity analysis of bubble dissolution time in 3D selective laser sintering using ensemble decision trees, Materials. 12 (2019) 1544. https://doi.org/10.3390/ma12091544.
[5] Z. Zhang, J. Femi-Oyetoro, I. Fidan, M. Ismail, M. Allen, Prediction of dimensional changes of low-cost metal material extrusion fabricated parts using machine learning techniques, Metals (Basel). 11 (2021) 690. https://doi.org/10.3390/met11050690.
[6] V.B. Angalakuditi, A. Appala, N. Singh, L.R. Singh, S.S. Baral, A Process Intensification Approach to Improve Productivity, Quality, and Reducing Emissions in the Iron Ore Sintering Process, J. Sustain. Metall. 9 (2023) 73–80. https://doi.org/10.1007/s40831-023-00660-x.
[7] Y. Jiang, N. Yang, Q. Yao, Z. Wu, W. Jin, Real-time moisture control in sintering process using offline–online NARX neural networks, Neurocomputing. 396 (2020) 209–215. https://doi.org/10.1016/j.neucom.2018.07.099.
[8] C. Zhang, Y. Pan, T. Hui, W. Xu, S. Zhang, et al., The sintering densification, microstructure and mechanical properties of Ti–48Al–2Cr–2Nb by a small addition of Sn–Al powder, J. Mater. Res. Technol. 15 (2021) 6947–6955. https://doi.org/10.1016/j.jmrt.2021.11.096.
[9] J. Tang, X. Geng, D. Li, Y. Shi, J. Tong, et al., Machine learning-based microstructure prediction during laser sintering of alumina, Sci. Rep. 11 (2021) 10724. https://doi.org/10.1038/s41598-021-89816-x.
[10] E. Westphal, H. Seitz, A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks, Addit. Manuf. 41 (2021) 101965. https://doi.org/10.1016/j.addma.2021.101965.
[11] S. Sahoo, A. Pare, S. Mishra, S. Soren, S.K. Biswal, Prediction of Sinter Properties Using a Hyper-Parameter-Tuned Artificial Neural Network, ACS Omega. 8 (2023) 11782–11789. https://doi.org/10.1021/acsomega.2c05980.
[12] K. Singh, P. Vakkantham, S.H. Nistala, V. Runkana, Multi-objective Optimization of Integrated Iron Ore Sintering Process Using Machine Learning and Evolutionary Algorithms, Trans. Indian Inst. Met. 73 (2020) 2033–2039. https://doi.org/10.1007/s12666-020-01920-0.
[13] Y. Guo, W.F. Lu, J.Y.H. Fuh, Semi-supervised deep learning based framework for assessing manufacturability of cellular structures in direct metal laser sintering process, J. Intell. Manuf. 32 (2021) 347–359. https://doi.org/10.1007/s10845-020-01575-0.
[14] T. Kamal, Gouthama, A. Upadhyaya, Machine Learning Based Sintered Density Prediction of Bronze Processed by Powder Metallurgy Route, Met. Mater. Int. 29 (2022) 1761–1774. https://doi.org/10.1007/s12540-022-01338-x.
[15] J.A. Ramos-Grez, I. La Fé-Perdomo, T. Larraín, Analytical and Machine Learning-based approaches to estimate the steady-state temperature limit on the surface of Cu powder beds when heated by a concentrated laser energy source, J. Manuf. Process. 76 (2022) 758–770. https://doi.org/10.1016/j.jmapro.2022.02.049.
[16] K. Mitra, N.K. Nath, Analysis of Two-Layer Sintering Process for Diffrent Bed Heights by Genetic Algoritm, IFAC Proc. 38 (2005) 63–68.
[17] N.A. Fountas, N.M. Vaxevanidis, Multi-objective optimization of engineering properties for laser-sintered durable thermoplastic/polyamide specimens by applying a virus-evolutionary genetic algorithm, Comput. Ind. 128 (2021) 103430. https://doi.org/10.1016/j.compind.2021.103430.
[18] K. Tang, Y. Da Wang, Y. Niu, T.A. Honeyands, D.O. Dea, et al., Particle classification of iron ore sinter green bed mixtures by 3D X-ray microcomputed tomography and machine learning, Powder Technol. 415 (2023) 118151. https://doi.org/10.1016/j.powtec.2022.118151.
[19] S. Liu, Z. Zhang, J. Zhao, X. Liu, J. Zhang, et al., Research and application of the sintering whole process intelligent manufacturing system, Ironmak. Steelmak. 50 (2023) 969–983. https://doi.org/10.1080/03019233.2023.2168929.
[20] D.H. Kim, T.I. Zohdi, Tool path optimization of selective laser sintering processes using deep learning, Comput. Mech. 69 (2022) 383–401. https://doi.org/10.1007/s00466-021-02079-1.
[21] W. Li, D. Wang, T. Chai, Burning state recognition of rotary kiln using ELMs with heterogeneous features, Neurocomputing. 102 (2013) 144–153. https://doi.org/10.1016/j.neucom.2011.12.047.
[22] X. Chen, X. Chen, J. She, M. Wu, A hybrid time series prediction model based on recurrent neural network and double joint linear–nonlinear extreme learning network for prediction of carbon efficiency in iron ore sintering process, Neurocomputing. 249 (2017) 128–139. https://doi.org/10.1016/j.neucom.2017.03.069.
[23] M. Abdellahi, A. Najafinezhad, H. Ghayour, S. Saber-Samandari, A. Khandan, Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity, J. Mech. Behav. Biomed. Mater. 72 (2017) 171–181. https://doi.org/10.1016/j.jmbbm.2017.05.004.
[24] S.H. Wang, H.F. Li, Y.J. Zhang, Z.S. Zou, A hybrid ensemble model based on ELM and improved AdaBoost.RT algorithm for predicting the iron ore sintering characters, Comput. Intell. Neurosci. 2019 (2019) 4164296. https://doi.org/10.1155/2019/4164296.
[25] X. Yuan, Y. Gu, Y. Wang, Z. Chen, B. Sun, C. Yang, FeO content prediction for an industrial sintering process based on supervised deep belief network, IFAC-PapersOnLine, Elsevier B.V. (2020) 11883–11888. https://doi.org/10.1016/j.ifacol.2020.12.703.
[26] W. Zhouzhi, Z. Xiaomin, Z. Zhipeng, Z. Hengjia, T. Hongwu, L. Yuan, Transfer learning aid the prediction of sintering densification, Ceram. Int. 46 (2020) 25200–25210. https://doi.org/10.1016/j.ceramint.2020.06.309.
[27] Y.M. Wie, K.G. Lee, K.H. Lee, T. Ko, K.H. Lee, The experimental process design of artificial lightweight aggregates using an orthogonal array table and analysis by machine learning, Materials. 13 (2020) 1–17. https://doi.org/10.3390/ma13235570.
[28] G. Boidi, M.R. Da Silva, F.J. Profito, I.F. Machado, Using Machine Learning Radial Basis Function (RBF) Method for Predicting Lubricated Friction on Textured and Porous Surfaces, Surf. Topogr. 8 (2020) 044002. https://doi.org/10.1088/2051-672X/abae13.
[29] A. Swaroop, V. Himasree, T. Thomas, Machine learning based a priori prediction on powder samples of sintering-driven abnormal grain growth, Comput. Mater. Sci. 187 (2021) 110117. https://doi.org/10.1016/j.commatsci.2020.110117.
[30] M.G. de Abreu, E.M.J.A. Pallone, J.A. Ferreira, J.V. Campos, R.V. de Sousa, Evaluation of machine learning based models to predict the bulk density in the flash sintering process, Mater. Today Commun. 27 (2021) 102220. https://doi.org/10.1016/j.mtcomm.2021.102220.
[31] A.T. Olanipekun, P.M. Mashinini, O.A. Owojaiye, N.B. Maledi, Applying a Neural Network-Based Machine Learning to Laser-Welded Spark Plasma Sintered Steel: Predicting Vickers Micro-Hardness, J. Manuf. Mater. Process. 6 (2022) 91. https://doi.org/10.3390/jmmp6050091.
[32] A. Batabyal, S. Sagar, J. Zhang, T. Dube, X. Yang, J. Zhang, Gaussian Process-Based Model to Optimize Additively Manufactured Powder Microstructures from Phase Field Modeling, ASCE-ASME, J. Risk Uncertain. 8 (2022) 011102. https://doi.org/10.1115/1.4051745.
[33] A.I. Kondarage, G. Poologasundarampillai, A. Nommeots-Nomm, P.D. Lee, T.D. Lalitharatne, et al., In situ 4D tomography image analysis framework to follow sintering within 3D-printed glass scaffolds, J. Am. Ceram. Soc. 105 (2022) 1671–1684. https://doi.org/10.1111/jace.18182.
[34] X. Ren, B. Yang, N. Luo, J. Li, Y. Li, et al., The Prediction of Sinter Drums Strength Using Hybrid Machine Learning Algorithms, Comput. Intell. Neurosci. 2022 (2022) 4790736. https://doi.org/10.1155/2022/4790736.
[35] A.M. Sadoun, I.R. Najjar, G.S. Alsoruji, M.S. Abd-Elwahed, M.A. Elaziz, A. Fathy, Utilization of Improved Machine Learning Method Based on Artificial Hummingbird Algorithm to Predict the Tribological Behavior of Cu-Al2O3 Nanocomposites Synthesized by In Situ Method, Mathematics. 10 (2022) 1266. https://doi.org/10.3390/math10081266.
[36] J. Fan, M. Liu, X. Wang, J. Wang, H. Wen, Y. Wang, A Novel Automatic Classification Method Based on the Hybrid Lightweight Shunt Network for Sintered Surfaces, Trans. Instrum. Meas. IEEE. 71 (2022) 5021611. https://doi.org/10.1109/TIM.2022.3204074.
[37] S.A. Jahan, M. Al Hasan, H. El-Mounayri, Framework for graph-base neural network using numerical simulation of metal powder bed fusion for correlating process parameters and defect generation, Manuf. Lett. A. 33 (2022) 765–775. https://doi.org/10.1016/j.mfglet.2022.07.095.
[38] Y. Abdalla, M. Elbadawi, M. Ji, M. Alkahtani, A. Awad, et al., Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products, Int. J. Pharm. 633 (2023) 122628. https://doi.org/10.1016/j.ijpharm.2023.122628.
[39] J. Wei, X. Chu, X.Y. Sun, K. Xu, H.X. Deng, et al., Machine learning in materials science, Info. Mat. 1 (2019) 338–358. https://doi.org/10.1002/inf2.12028.
[40] G. Wang, J. Zhang, Z. Liu, Y. Wang, Y. Li, B. Zhang, Compound Use of Chemical Waste as Flux in Iron Ore Sintering, Metall. Mater. Trans. B. 53 (2022) 2143–2152. https://doi.org/10.1007/s11663-022-02514-5.
[41] L. Zhang, S. Yang, W. Tang, H. Yang, X. Xue, Effect of coke breeze content on sintering mechanism and metallurgical properties of high-chromium vanadium-titanium magnetite, Ironmak. Steelmak. 47 (2020) 821–827. https://doi.org/10.1080/03019233.2019.1615814.
[42] H. Zhou, J. Wang, P. Ma, H. Meng, F. Cheng, J. Luo, Influence of quick lime on pore characteristics of high-temperature zone in iron ore sinter based on XCT technology, J. Mater. Res. Technol. 15 (2021) 4475–4486. https://doi.org/10.1016/j.jmrt.2021.10.061.
[43] M. Steurer, R.J. Hill, N. Pfeifer, Metrics for evaluating the performance of machine learning based automated valuation models, J. Prop. Res. 38 (2021) 99–129. https://doi.org/10.1080/09599916.2020.1858937.
[44] J. Liu, F. Chen, X. Ma, Z. Gong, J. Zhang, et al., Summarization of Sinter Quality Prediction Algorithms, Proceedings - 2022 37th Youth Academic Annual Conference of Chinese Association of Automation, YAC, Institute of Electrical and Electronics Engineers Inc, IEEE. (2022) 1099–1105. https://doi.org/10.1109/YAC57282.2022.10023825.

Cited By

Crossref Google Scholar
Recent advances in machine learning algorithms for sintering processes
Submitted
2023-01-27
Available online
2023-03-29
How to Cite
Azizi, S. (2023). Recent advances in machine learning algorithms for sintering processes. Synthesis and Sintering, 3(1), 20-27. https://doi.org/10.53063/synsint.2023.31139