Synthesis and sintering of SrTiO3–ZnO ceramics: Role of ZnO content on microstructure and dielectric properties

  • Muhammad Kashif 1
  • Muhammad Salman Habib 1
  • Muhammad Asif Rafiq 1
  • Moaz Waqar 2
  • Muhammad Asif Hussain 3
  • Ayesha Iqbal 1
  • Mehboob Ahmed Abbasi 1
  • Shahid Saeed 1
  • 1 Department of Metallurgical and Materials Engineering, University of Engineering and Technology, G.T Road, Lahore – 54890, Pakistan
  • 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore
  • 3 Department of Metallurgical and Materials Engineering, University of Punjab Lahore, Pakistan

Abstract

The classical system of combining modern perovskite and wurtzite structure semiconductor materials is used to model the internal structure for the applications of functional novel electronic devices. The structure-property relation has a significant impact on the properties of metal oxides-based functional ceramics. The structural and electrical properties of SrTiO3-xZnO (0 ≤x≤ 10 wt%) ceramics produced via solid-state reaction (SSR) were thoroughly examined. X-ray diffraction (XRD) and scanning electron microscopy confirmed the presence of a mono-phase cubic structure with Pm3̅m space group and resulted in increased density respectively. Complex impedance spectroscopy (CIS) was carried out from 300 to 500 °C temperature within the frequency range of 100 Hz to 1 MHz to study the contribution of grain bulk and grain boundary for impedance behavior. Grain boundaries dominated the overall resistance of the samples and the addition of ZnO in SrTiO3 caused an increase in the overall conductivity. Increasing temperature decreases the resistance of both components, and at higher frequencies that confirms the negative temperature coefficient resistance (NTCR) behavior of the samples. Increasing temperature decreases the relaxation of grain bulk and grain boundary thus predicting the hopping conduction mechanism. The results will be helpful to engineer the microstructure of SrTiO3 based on practical applications such as sensors, actuators, and energy devices.

Downloads

Download data is not yet available.
Keywords: Semiconductor, Complex impedance spectroscopy, Relaxation time, Hopping conduction, Sensors

References

[1] A. Shakouri, Recent developments in semiconductor thermoelectric physics and materials, Ann. Rev. Mater. Res. 41 (2011) 399–431. https://doi.org/10.1146/annurev-matsci-062910-100445.
[2] Z. Xiao, K. Kisslinger, E. Dimasi, J.R. Kimbrough, The fabrication of nanoscale Bi2Te3/Sb2Te3 multilayer thin film-based thermoelectric power chips, Microelectron. Eng. 197 (2018) 8–14. https://doi.org/10.1016/j.mee.2018.05.001.
[3] D.K.C. MacDonald, Thermoelectricity: an introduction to the principles, Wiley, N.Y. (2006).
[4] A. Khan, A. Ali, I. Khan, Sintering behavior and microwave dielectric properties of CaTi1-x(Nb1/2Al1/2)xO3, Synth. Sinter. 1 (2021) 197–201. https://doi.org/10.53063/synsint.2021.1467.
[5] Q. Ma, F. Tietz, D. Sebold, D. Stöver, Y-substituted SrTiO3–YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ, J. Power Sources. 195 (2010) 1920–1925. https://doi.org/10.1016/j.jpowsour.2009.09.075.
[6] S. Ahmadi, Synthesis and characterization of aluminum-yttrium perovskite powder using a co-precipitation technique, Synth. Sinter. 2 (2022) 170–175. https://doi.org/10.53063/synsint.2022.24135.
[7] J. Mavroides, J. Kafalas, D. Kolesar, Photoelectrolysis of water in cells with SrTiO3 anodes, Appl. Phys. Lett. 28 (1976) 241–243. https://doi.org/10.1063/1.88723.
[8] F. Wagner, G. Somorjai, Photocatalytic and photoelectrochemical hydrogen production on strontium titanate single crystals, J. Am. Chem. Soc. 102 (1980) 5494–5502. https://doi.org/10.1021/ja00537a013.
[9] J. Gerblinger, H. Meixner, Fast oxygen sensors based on sputtered strontium titanate, Sens. Actuators B: Chem. 4 (1991) 99–102. https://doi.org/10.1016/0925-4005(91)80183-K.
[10] S. Hayward, E. Salje, Cubic-tetragonal phase transition in SrTiO3 revisited: Landau theory and transition mechanism. Ph. Transit. 68 (1999) 501–522. https://doi.org/10.1080/01411599908224530.
[11] H. Obara, A. Yamamoto, C.-H. Lee, K. Kobayashi, A. Matsumoto, R. Funahashi, Thermoelectric properties of Y-doped polycrystalline SrTiO3, Jpn. J. Appl. Phys. 43 (2004) L540. https://doi.org/10.1143/JJAP.43.L540.
[12] H. Ohta, K. Sugiura, K. Koumoto, Recent progress in oxide thermoelectric materials: p-type ca3co49 and n-type srtio3, Inorg. Chem. 47 (2008) 8429–8436. https://doi.org/10.1021/ic800644x.
[13] K. Koumoto, I. Terasaki, R. Funahashi, Complex oxide materials for potential thermoelectric applications, MRS Bull. 31 (2006) 206–210. https://doi.org/10.1557/mrs2006.46.
[14] M. Yamamoto, H. Ohta, K. Koumoto, Thermoelectric phase diagram in a CaTiO3-SrTiO3-BaTiO3 system, Appl. Phys. Lett. 90 (2007) 072101. https://doi.org/10.1063/1.2475878.
[15] S.C. Kehr, Y.M. Liu, L.W. Martin, P. Yu, M. Gajek, et al., Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling, Nat. Commun. 2 (2011) 249. https://doi.org/10.1038/ncomms1249.
[16] Y. Xin, J. Jiang, K. Huo, T. Hu, P.K. Chu, Bioactive SrTiO3 nanotube arrays: strontium delivery platform on Ti-based osteoporotic bone implants, ACS Nano. 3 (2009) 3228–3234. https://doi.org/10.1021/nn9007675.
[17] Y. Nakano, N. Ichinose, Oxygen adsorption and VDR effect in (Sr, Ca)TiO3−x based ceramics, J. Mater. Res. 5 (1990) 2910–2922. https://doi.org/10.1557/JMR.1990.2910.
[18] Y.-S. Ham, J.-H. Koh, The dielectric characteristics of screen printed SrTiO3-epoxy composite thick films on the Cu plate PCB substrates, Ferroelectrics. 382 (2009) 85–91. https://doi.org/10.1080/00150190902869871.
[19] C. Jorel, C. Vallée, P. Gonon, E. Gourvest, C. Dubarry, E. Defay, High performance metal-insulator-metal capacitor using a SrTiO3/ZrO2 bilayer, Appl. Phys. Lett. 94 (2009) 253502. https://doi.org/10.1063/1.3158951.
[20] T. Menke, R. Dittmann, P. Meuffels, K. Szot, R. Waser, Impact of the electroforming process on the device stability of epitaxial Fe-doped SrTiO3 resistive switching cells, J. Appl. Phys. 106 (2009) 114507. https://doi.org/10.1063/1.3267485.
[21] D. Merten, K.T. Kallis, H. Körner, S. Schmeinck, J. Zimmermann, H. L. Fiedler, Production of polycrystalline Bi2Te3 nanostructures and the effect of annealing on their electrical conductivity, Microelectron. Eng. 214 (2019) 44–49. https://doi.org/10.1016/j.mee.2019.04.023.
[22] J.A. Noland, Optical absorption of single-crystal strontium titanate, Phys. Rev. 94 (1954) 724. https://doi.org/10.1103/PhysRev.94.724.
[23] R. Moos, W. Menesklou, K. Härdtl, Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K, Appl. Phys. A. 61 (1995) 389–395. https://doi.org/10.1007/BF01540113.
[24] N.H. Chan, R. Sharma, D.M. Smyth, Nonstoichiometry in SrTiO3, J. Electrochem. Soc. 128 (1981) 1762–1769. https://doi.org/10.1149/1.2127727.
[25] R. Moos, K.H. Hardtl, Defect chemistry of donor‐doped and undoped strontium titanate ceramics between 1000° and 1400° C, J. Am. Ceram. Soc. 80 (1997) 2549–2562. https://doi.org/10.1002/chin.199801007.
[26] A.F. Wells, Structural inorganic chemistry, Oxford University Press. (2012).
[27] T. Klaytae, S. Thountom, Microstructure and dielectric properties of ST ceramics prepared by the sol–gel combustion technique with chitosan addition, Ceram. Int. 41 (2015) S117–S122. https://doi.org/10.1016/j.ceramint.2015.03.208.
[28] C.-F. Kao, W.-D. Yang, Preparation and electrical properties of fine strontium titanate powder from titanium alkoxide in a strong alkaline solution, Mater. Sci. Eng: B. 38 (1996) 127–137. https://doi.org/10.1016/0921-5107(95)01512-4.
[29] M.V. Raymond, V.R. Amarakoon, Microstructure and electrical properties of chemically prepared Nb2O5‐doped SrTiO3 ceramics, J. Am. Ceram. Soc. 73 (2005) 1308–1311. https://doi.org/10.1111/j.1151-2916.1990.tb05196.x.
[30] R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. A. 32 (1976) 751–767. https://doi.org/10.1107/S0567739476001551.
[31] B. Madhavan, A. Ashok, Characterisation and dielectric property analysis of A-site doped LaTiO3-δ perovskites synthesised by ball milling method, Adv. Matter. Lett. 6 (2015) 395–401. https://doi.org/10.5185/amlett.2015.5827.
[32] E. Echeverri, O. Arnache, Structural and impedance analysis of Co-doped SrTiO3 perovskite, J. Phys. 687 (2016) 012040. https://doi.org/10.1088/1742-6596/687/1/012040.
[33] C.B. Kaynak, M. Lukosius, B. Tillack, C. Wenger, T. Blomberg, G. Ruhl, Single SrTiO3 and Al2O3/SrTiO3/Al2O3 based MIM capacitors: Impact of the bottom electrode material, Microelectron. Eng. 88 (2011) 1521–1524. https://doi.org/10.1016/j.mee.2011.03.022.
[34] Q. Khushi Muhammad, Impedance analysis and conduction mechanism of Ba doped Mn1.75Ni0.7Co0.52xCu0.05O4 NTC thermistors, Project. (2017).
[35] D. Hu, M. Shen, W. Cao, Dielectric enhancement in interface-modified BaTiO3/SrTiO3 multilayered films prepared by pulsed laser deposition, Microelectron. Eng. 83 (2006) 553–556. https://doi.org/10.1016/j.mee.2005.12.007.
[36] M.A. Rafiq, M.N. Rafiq, K.V. Saravanan, Dielectric and impedance spectroscopic studies of lead-free barium‐calcium‐zirconium‐titanium oxide ceramics, Ceram. Int. 41 (2015) 11436–11444. https://doi.org/10.1016/j.ceramint.2015.05.107.
[37] J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics, Mater. Sci. Eng: B. 55 (1998) 114–118. https://doi.org/10.1016/S0921-5107(98)00188-3.
[38] S. Sen, R. Choudhary, Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics, Mater. Chem. Phys. 87 (2004) 256–263. https://doi.org/10.1016/j.matchemphys.2004.03.005.
[39] J. Xia, Q. Zhao, B. Gao, A. Chang, B. Zhang, et al., Sintering temperature and impedance analysis of Mn0.9 Co1.2Ni0.27Mg0.15 Al0.03Fe0.45O4 NTC ceramic prepared by W/O microemulsion method, J. Alloys Compd. 617 (2014) 228–234. https://doi.org/10.1016/j.jallcom.2014.07.149.
[40] S. Song, Z. Ling, F. Placido, Impedance analysis of MnCoCuO NTC ceramic, Mater. Res. Bull. 40 (2005) 1081–1093. https://doi.org/10.1016/j.materresbull.2005.04.001.
[41] R. Sagar, R. Raibagkar, Complex impedance and modulus studies of cerium doped barium zirconium titanate solid solution, J. Alloys Compd. 549 (2013) 206–212. https://doi.org/10.1016/j.jallcom.2012.09.062.
[42] C. Suman, K. Prasad, R. Choudhary, Impedance analysis of Pb2Sb3LaTi5O18 ceramic, Mater. Chem. Phys. 97 (2006) 425–430. https://doi.org/10.1007/BF02707284.
[43] A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan Structural, microstructural and electrical studies of La and Cu doped BaTiO3 ceramics, Phys. B: Condens. Matter. 405 (2010) 99–106. https://doi.org/10.1016/j.physb.2009.08.075.
[44] S. Sen, S.K. Mishra, S.S. Palit, S.K. Das, A. Tarafdar, Impedance analysis of 0.65Pb(Mg1/3Nb2/3)O3–0.35PbTiO3 ceramic, J. Alloys Compd. 453 (2008) 395–400. https://doi.org/10.1016/j.jallcom.2006.11.126.
[45] C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies, Phys. Rev. 83 (1951) 121. https://doi.org/10.1103/PhysRev.83.121.
[46] A.K. Jonscher, The universal'dielectric response, Nature. 267 (1977) 673–679. https://doi.org/10.1038/267673a0.
[47] M.A. Rafiq, Q.K. Muhammad, S. Nasir, U. Amin, A. Maqbool, Z. Ahmad, Structure, infra-red, dielectric properties and conduction mechanism of Ti and Cu–Ti co-doped bismuth ferrite (BiFeO3): a comparison study, Appl. Phys. A. (2018) 124. https://doi.org/10.1007/s00339-018-2170-8.
[48] M.A. Rafiq, A. Tkach, M.E. Costa, P.M. Vilarinho, Defects and charge transport in Mn-doped K0.5Na0.5NbO3 ceramics, Phys. Chem. Chem. Phys. 17 (2015) 24403–24411. https://doi.org/10.1039/C5CP02883C.
[49] J.R. Macdonald, W.B. Johnson, Fundamentals of impedance spectroscopy. Impedance Spectroscopy: Theory, Experiment, and Applications, Third Edition, John Wiley & Sons, Ltd. (2005) 1–26. https://doi.org/10.1002/9781119381860.ch1.
[50] A. Peláiz-Barranco, J.D.S. Guerra, R. López-Noda, E.B. Araújo, Ionized oxygen vacancy-related electrical conductivity in (Pb1−xLax)(Zr0.90Ti0.10)1−x/4O3 ceramics, J. Phys. D: Appl. Phys. 41 (2008) 215503. https://doi.org/10.1088/0022-3727/41/21/215503.
[51] J.R. MacCallum, C.A. Vincent, Polymer electrolyte reviews, Springer Dordrecht. (1989)
[52] A. Kyritsis, P. Pissis, J. Grammatikakis, Dielectric relaxation spectroscopy in poly (hydroxyethyl acrylates)/water hydrogels, J. Polym. Sci. B: Polym. Phys. 33 (1995) 1737–1750. https://doi.org/10.1002/polb.1995.090331205.
[53] V. Prakash, S. Choudhary, T. Sinha, Dielectric relaxation in complex perovskite oxide BaCo1/2W1/2O3, Phys. B: Condens. Matter. 403 (2008) 103–108. https://doi.org/10.1016/j.physb.2007.08.015.
[54] R. Tripathi, A. Kumar, C. Bharti, T.P. Sinha, Dielectric relaxation of ZnO nanostructure synthesized by soft chemical method, Curr. Appl. Phys. 10 (2010) 676–681. https://doi.org/10.1016/j.cap.2009.08.015.
[55] J. Han, F. Wan, Z. Zhu, W. Zhang, Dielectric response of soft mode in ferroelectric SrTiO3, Appl. Phys. Lett. 90 (2007) 031104. https://doi.org/10.1063/1.2431448.
[56] A. Pashkin, S. Kamba, M. Berta, J. Petzelt, G.D.C. Csete de Györgyfalva, et al., High frequency dielectric properties of CaTiO3 -based microwave ceramics, J. Phys. D: Appl. Phys. 38 (2005) 741. https://doi.org/10.1088/0022-3727/38/5/012.
[57] Z. Sun, Y. Pu, Z. Dong, Y. Hu, X. Liu, P. Wang, Effect of Zr4+ content on the TC range and dielectric and ferroelectric properties of BaZrxTi1−xO3 ceramics prepared by microwave sintering, Ceram. Int. 40 (2014) 3589–3594. https://doi.org/10.1016/j.ceramint.2013.09.069.
[58] O. Raymond, R. Font, N. Suárez-Almodovar, J. Portelles, J.M. Siqueiros, Frequency-temperature response of ferroelectromagnetic Pb(Fe1∕2Nb1∕2)O3 ceramics obtained by different precursors. Part I. Structural and thermo-electrical characterization, J. Appl. Phys. 97 (2005) 084107. https://doi.org/10.1063/1.1870099.

Cited By

Crossref Google Scholar
Synthesis and sintering of SrTiO3–ZnO ceramics: Role of ZnO content on microstructure and dielectric properties
Submitted
2023-01-18
Available online
2023-03-13
How to Cite
Kashif, M., Habib, M. S., Rafiq, M. A., Waqar, M., Hussain, M. A., Iqbal, A., Abbasi, M. A., & Saeed, S. (2023). Synthesis and sintering of SrTiO3–ZnO ceramics: Role of ZnO content on microstructure and dielectric properties. Synthesis and Sintering, 3(1), 1-13. https://doi.org/10.53063/synsint.2023.31138