Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics

  • Alain Shima 1
  • Masoud Kazemi 2
  • 1 Department of Aeronautical Engineering, University of Kyrenia, Kyrenia, Cyprus
  • 2 Ceramic Department, Materials and Energy Research Center (MERC), Karaj, Iran

Abstract

In the present work, densification behavior and mechanical features (fracture toughness and Vickers hardness) of undoped and TiN-doped ZrB2 ceramic materials, hot-pressed at 1800 °C under 15 MPa for 1 h, were studied. The addition of only 5 wt% TiN into ZrB2 has resulted in an increase in its relative density from 83% to 90%. Removal of oxide contaminations like B2O3 via chemical reactions with TiN and new secondary phases formation such as ZrN, h-BN, and (Zr,Ti)B2 solid solutions were approved employing crystalline phase analysis and microstructural studies. Improvement of densification and restriction of grain growth caused enhancement of mechanical characteristics. The measured values of Vickers hardness and fracture toughness are ameliorated from 7.8 GPa and 1.5 MPa.m1/2 to 14.1 GPa and 3.8 MPa.m1/2, respectively.

Downloads

Download data is not yet available.
Keywords: ZrB2, TiN, Densification, Sinterability, Mechanical properties

References

[1] A. Akbarpour, M. Sobhani, O. Mirzaee, M. Zakeri, Ablation resistance of graphite coated by spark plasma sintered ZrB2–SiC based composites, Bol. Soc. Esp. Ceram. Vidr. 61 (2022) 604–610. https://doi.org/10.1016/j.bsecv.2021.05.004.
[2] A. Chamberlain, W.G. Fahrenholtz, W.G. Fahrenholtz, D.T. Ellerby, High-Strength Zirconium Diboride-Based Ceramics, J. Am. Ceram. Soc. 87 (2004) 1170–1172. https://doi.org/10.1111/j.1551-2916.2004.01170.x.
[3] F. Sadegh Moghanlou, M. Vajdi, A. Motallebzadeh, J. Sha, M. Shokouhimehr, M. Shahedi Asl, Numerical analyses of heat transfer and thermal stress in a ZrB2 gas turbine stator blade, Ceram. Int. 45 (2019) 17742–17750. https://doi.org/10.1016/j.ceramint.2019.05.344.
[4] S. Mungiguerra, G.D. Di Martino, A. Cecere, R. Savino, L. Zoli, et al., Ultra-high-temperature testing of sintered ZrB2-based ceramic composites in atmospheric re-entry environment, Int. J. Heat Mass Transf. 156 (2020) 119910. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119910.
[5] T. R. Paul, M.K. Mondal, M. Mallik, Densification behavior of ZrB2–MoSi2–SiCw composite processed by multi stage spark plasma sintering, Ceram. Int. 47 (2021) 31948–31972. https://doi.org/10.1016/j.ceramint.2021.08.081.
[6] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[7] P. Vaziri, Z. Balak, Improved mechanical properties of ZrB2-30 vol% SiC using zirconium carbide additive, Int. J. Refract. Met. Hard Mater. 83 (2019) 104958. https://doi.org/10.1016/j.ijrmhm.2019.05.004.
[8] P. Sengupta, S.S. Sahoo, A. Bhattacharjee, S. Basu, I. Manna, Effect of TiC addition on structure and properties of spark plasma sintered ZrB2–SiC–TiC ultrahigh temperature ceramic composite, J. Alloys Compd. 850 (2021) 156668. https://doi.org/10.1016/j.jallcom.2020.156668.
[9] S. Jafari, M. Bavand-Vandchali, M. Mashhadi, A. Nemati, Effects of HfB2 addition on pressureless sintering behavior and microstructure of ZrB2-SiC composites, Int. J. Refract. Met. Hard Mater. 94 (2021) 105371. https://doi.org/10.1016/j.ijrmhm.2020.105371.
[10] S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Spark Plasma Sintering of Ceramic Matrix Composite of ZrB2 and TiB2: Microstructure, Densification, and Mechanical Properties—A Review. Met. Mater. Int. 27 (2021) 2146–2159. https://doi.org/10.1007/s12540-020-00874-8.
[11] M. Saravana Kumar, S. Rashia Begum, M. Vasumathi, C.C. Nguyen, Q.V. Le, Influence of molybdenum content on the microstructure of spark plasma sintered titanium alloys, Synth. Sinter. 1 (2021) 41–47. https://doi.org/10.53063/synsint.2021.1114.
[12] E. Dodi, Z. Balak, H. Kafashan, HfB2-doped ZrB2-30 vol.% SiC composites: oxidation resistance behavior, Mater. Res. Express. 8 (2021) 045605. https://doi.org/10.1088/2053-1591/abdf1a.
[13] N.S. Peighambardoust, Ç. Çevik, T. Assar, S. Jung, S.Y. Lee, J. Hwan Cha, Pulsed electric current sintering of TiB2-based ceramics using nitride additives, Synth. Sinter. 1 (2021) 28–33. https://doi.org/10.53063/synsint.2021.1112.
[14] H. Wang, D. Chen, C.-A. Wang, R. Zhang, D. Fang, Preparation and characterization of high-toughness ZrB2/Mo composites by hot-pressing process, Int. J. Refract. Met. Hard Mater. 27 (2009) 1024–1026. https://doi.org/10.1016/j.ijrmhm.2009.06.003.
[15] M. Shahedi Asl, B. Nayebi, Z. Ahmadi, S. Parvizi, M. Shokouhimehr, A novel ZrB2–VB2–ZrC composite fabricated by reactive spark plasma sintering, Mater. Sci. Eng. A. 731 (2018) 131–139. https://doi.org/10.1016/j.msea.2018.06.008.
[16] S.K. Mishra, S.K. Das, A.K. Ray, P. Ramachandrarao, Effect of Fe and Cr Addition on the Sintering Behavior of ZrB2 Produced by Self-Propagating High-Temperature Synthesis, J. Am. Ceram. Soc. 85 (2002) 2846–2848. https://doi.org/10.1111/j.1151-2916.2002.tb00540.x.
[17] B. Mohammadpour, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Spark plasma sintering of Al-doped ZrB2–SiC composite, Ceram. Int. 45 (2018) 4262–4267. https://doi.org/10.1016/j.ceramint.2018.11.098.
[18] J.J. Meléndez-Martı́nez, A. Domı́nguez-Rodrı́guez, F. Monteverde, C. Melandri, G. de Portu, Characterisation and high temperature mechanical properties of zirconium boride-based materials, J. Eur. Ceram. Soc. 22 (2002) 2543–2549. https://doi.org/10.1016/S0955-2219(02)00114-0.
[19] X. Sun, W. Han, Q. Liu, P. Hu, C. Hong, ZrB2-ceramic toughened by refractory metal Nb prepared by hot-pressing, Mater. Des. 31 (2010) 4427–4431. https://doi.org/10.1016/j.matdes.2010.04.020.
[20] E. Ghasali, M. Shahedi Asl, Microstructural development during spark plasma sintering of ZrB2–SiC–Ti composite, Ceram. Int. 44 (2018) 18078–18083. https://doi.org/10.1016/j.ceramint.2018.07.011.
[21] F. Monteverde, The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures, Corros. Sci. 47 (2005) 2020–2033. https://doi.org/10.1016/j.corsci.2004.09.019.
[22] F. Monteverde, A. Bellosi, Development and characterization of metal-diboride-based composites toughened with ultra-fine SiC particulates, Solid State Sci. 7 (2005) 622–630. https://doi.org/10.1016/j.solidstatesciences.2005.02.007.
[23] F. Monteverde, A. Bellosi, Effect of the addition of silicon nitride on sintering behaviour and microstructure of zirconium diboride, Scr. Mater. 46 (2002) 223–228. https://doi.org/10.1016/S1359-6462(01)01229-5.
[24] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, I. Farahbakhsh, Sintering behavior of ZrB2–SiC composites doped with Si3N4: A fractographical approach, Ceram. Int. 43 (2017) 9699–9708. https://doi.org/10.1016/j.ceramint.2017.04.144.
[25] H. Wu, W. Zhang, Fabrication and properties of ZrB2–SiC–BN machinable ceramics, J. Eur. Ceram. 30 (2010) 1035–1042. https://doi.org/10.1016/j.jeurceramsoc.2009.09.022.
[26] G. Li, W. Han, B. Wang, Effect of BN grain size on microstructure and mechanical properties of the ZrB2–SiC–BN composites, Mater. Des. 32 (2011) 401–405. https://doi.org/10.1016/j.matdes.2010.05.051.
[27] M. Maleki, A. Beitollahi, J. Lee, M. Shokouhimehr, J. Javadpour, et al., One pot synthesis of mesoporous boron nitride using polystyrene-b-poly(ethylene oxide) block copolymer, RSC Adv. 5 (2015) 6528–6535. https://doi.org/10.1039/C4RA11431K.
[28] M. Maleki, M. Shokouhimehr, H. Karimian, A. Beitollahi, Three-dimensionally interconnected porous boron nitride foam derived from polymeric foams, RSC Adv. 6 (2016) 51426–51434. https://doi.org/10.1039/C6RA07751J.
[29] M. Maleki, A. Beitollahi, M. Shokouhimehr, Simple Synthesis of Two-Dimensional Micro/Mesoporous Boron Nitride, Eur. J. Inorg. Chem. 2015 (2015) 2478–2485. https://doi.org/10.1002/ejic.201500194.
[30] M. Maleki, A. Beitollahi, M. Shokouhimehr, Template-free synthesis of porous boron nitride using a single source precursor, RSC Adv. 5 (2015) 46823–46828. https://doi.org/10.1039/C5RA04636J.
[31] F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311. https://doi.org/10.1016/j.ceramint.2018.11.228.
[32] W. Han, G. Li, X. Zhang, J. Han, Effect of AlN as sintering aid on hot-pressed ZrB2–SiC ceramic composite, J. Alloys Compd. 471 (2009) 488–491. https://doi.org/10.1016/j.jallcom.2008.03.135.
[33] Z. Ahmadi, B. Nayebi, M. Shahedi Asl, M. Ghassemi Kakroudi, Fractographical characterization of hot pressed and pressureless sintered AlN-doped ZrB2–SiC composites, Mater. Charact. 110 (2015) 77–85. https://doi.org/10.1016/j.matchar.2015.10.016.
[34] J.-H. Park, Y.H. Koh, H.E. Kim, C.S. Hwang, E.S. Kang, Densification and Mechanical Properties of Titanium Diboride with Silicon Nitride as a Sintering Aid, J. Am. Ceram. Soc. 82 (1999) 3037–3042. https://doi.org/10.1111/j.1151-2916.1999.tb02199.x.
[35] Z. Hamidzadeh Mahaseni, M. Dashti Germi, Z. Ahmadi, M. Shahedi Asl, Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition, Ceram. Int. 44 (2018) 13367–13372. https://doi.org/10.1016/j.ceramint.2018.04.171.
[36] M. Dashti Germi, Z. Hamidzadeh Mahaseni, Z. Ahmadi, M. Shahedi Asl, Phase evolution during spark plasma sintering of novel Si3N4-doped TiB2–SiC composite, Mater. Charact. 145 (2018) 225–232. https://doi.org/10.1016/j.matchar.2018.08.043.
[37] F. Monteverde, S. Guicciardi, A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater. Sci. Eng. A. 346 (2003) 310–319. https://doi.org/10.1016/S0921-5093(02)00520-8.
[38] L.-H. Li, H.-E. Kim, E.S. Kang, Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid, J. Eur. Ceram. 22 (2002) 973–977. https://doi.org/10.1016/S0955-2219(01)00403-4.
[39] M. Shahedi Asl, S.A. Delbari, F. Shayesteh, Z. Ahmadi, A. Motallebzadeh, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite, Int. J. Refract. Met. Hard Mater. 81 (2019) 119–126. https://doi.org/10.1016/j.ijrmhm.2019.02.022.
[40] C. Hu, Y. Sakka, H. Tanaka, T. Nishimura, S. Grasso, Synthesis, microstructure and mechanical properties of (Zr,Ti)B2-(Zr,Ti)N composites prepared by spark plasma sintering, J. Alloys Compd. 494 (2010) 266–270. https://doi.org/10.1016/j.jallcom.2010.01.006.
[41] Z. Ahmadi, M. Zakeri, M. Farvizi, A. Habibi-Yangjeh, S. Asadzadeh-Khaneghah, M. Shahedi Asl, Synergistic influence of SiC and C3N4 reinforcements on the characteristics of ZrB2-based composites, J. Asian Ceram. Soc. 9 (2021) 53–62. https://doi.org/10.1080/21870764.2020.1847425.
[42] G.R. Anstis, P. Chantikul, B.R. Lawn, D.B. Marshall, A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements, J. Am. Ceram. Soc. 64 (1981) 533–538. https://doi.org/10.1111/j.1151-2916.1981.tb10320.x.
[43] Z. Ahmadi, M. Shahedi Asl, M. Zakeri, M. Farvizi, Fabrication of (Zr,Ti)B2–ZrN–BN composites through reactive spark plasma sintering of ZrB2 and TiN, Micron. 154 (2022) 103203. https://doi.org/10.1016/j.micron.2021.103203.
[44] Z. Ahmadi, M. Shahedi Asl, M. Zakeri, M. Farvizi, On the reactive spark plasma sinterability of ZrB2–SiC–TiN composite, J. Alloys Compd. 909 (2022) 164611. https://doi.org/10.1016/j.jallcom.2022.164611.
[45] J. Li, J. Han, S. Meng, B. Wang, Valence electron structure of the (ZrTi)B2 solid solutions calculated by the three models, Sci. China Ser. E: Technol. Sci. 52 (2009) 1195–1201. https://doi.org/10.1007/s11431-009-0011-x.
[46] W.M. Wang, H. Wang, Z.Y. Fu, Microstructure and Mechanical Properties of the Boride Doping TiB2 Ceramic, Key Eng. Mater. 249 (2003) 109–114. https://doi.org/10.4028/www.scientific.net/KEM.249.109.
[47] B. Fu, H. Wang, C. Zou, Z. Wei, The influence of Zr content on microstructure and precipitation of silicide in as-cast near α titanium alloys, Mater. Charact. 99 (2015) 17–24. https://doi.org/10.1016/j.matchar.2014.09.015.

Cited By

Crossref Google Scholar
Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics
Submitted
2022-12-04
Available online
2023-03-30
How to Cite
Shima, A., & Kazemi, M. (2023). Influence of TiN addition on densification behavior and mechanical properties of ZrB2 ceramics. Synthesis and Sintering, 3(1), 46-53. https://doi.org/10.53063/synsint.2023.31133