Microwave sintering of ZrB2-based ceramics: A review

  • Samira Savani 1
  • Mohammad Alipour 2
  • Ankur Sharma 3
  • Dagarapu Benny Karunakar 3
  • 1 Otto Schott Institute of Materials Research, Friedrich Schiller University, Jena, Germany
  • 2 Volvo Trucks Technology, Eketrägatan 25, Göteborg, Sweden
  • 3 Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, 247667, India

Abstract

Recently, microwave sintering has absorbed remarkable attention on the basis of enhanced microstructural/mechanical characteristics in comparison with conventional sintering techniques based on powder technology. This method not only can be employed for the processing of metals, alloys, and metal matrix composites but also for the manufacturing of advanced ceramics and ceramic matrix composites. Zirconium diboride (ZrB2) as an interesting member of ultrahigh temperature ceramics is one of the most undertaking candidates in modern structural ceramics applications. This paper reviews the processing-densification-mechanical properties correlations in microwave-sintered ZrB2-based ceramics and composites. The text concentrates on the microwave-assisted production of ZrB2 divided into two categories: synthesis of ZrB2 powders by microwave sintering and sintering of ZrB2-based ceramics and composites by microwave sintering. The effects of some additives and reinforcements, such as B4C, SiC, TiC, and MgO, on zirconium diboride's densification and mechanical properties are summarized.

Downloads

Download data is not yet available.
Keywords: Ultrahigh temperature ceramics, Microwave sintering, Synthesis, ZrB2, Ceramic matrix composites

References

[1] N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater. 15 (2016) 804–809. https://doi.org/10.1038/nmat4687.
[2] J.S. Pelz, N. Ku, M.A. Meyers, L.R. Vargas-Gonzalez, Additive manufacturing of structural ceramics: a historical perspective, J. Mater. Res. Technol. 15 (2021) 670–695. https://doi.org/10.1016/j.jmrt.2021.07.155.
[3] B.R. Golla, A. Mukhopadhyay, B. Basu, S.K. Thimmappa, Review on ultra-high temperature boride ceramics, Prog. Mater. Sci. 111 (2020) 100651. https://doi.org/10.1016/j.pmatsci.2020.100651.
[4] A. Nisar, R. Hassan, A. Agarwal, K. Balani, Ultra-high temperature ceramics: Aspiration to overcome challenges in thermal protection systems, Ceram. Int. 48 (2022) 8852–8881. https://doi.org/10.1016/j.ceramint.2021.12.199.
[5] D. Ni, Y. Cheng, J. Zhang, J.-X. Liu, J. Zou, et al., Advances in ultra-high temperature ceramics, composites, and coatings, J. Adv. Ceram. 11 (2022) 1–56. https://doi.org/10.1007/s40145-021-0550-6.
[6] H. Mao, F. Shen, Y. Zhang, J. Wang, K. Cui, et al., Microstructure and mechanical properties of carbide reinforced TiC-based ultra-high temperature ceramics: A review, Coatings. 11 (2021) 1444. https://doi.org/10.3390/coatings11121444.
[7] J. Meng, H. Fang, H. Wang, Y. Wu, C. Wei, et al., Effects of refractory metal additives on diboride‐based ultra‐high temperature ceramics: A review, Int. J. Appl. Ceram. Technol. 20 (2023) 1350–1370. https://doi.org/10.1111/ijac.14336.
[8] M. Ghasilzadeh Jarvand, Z. Balak, Oxidation response of ZrB2–SiC–ZrC composites prepared by spark plasma sintering, Synth. Sinter. 2 (2022) 191–197. https://doi.org/10.53063/synsint.2022.24134.
[9] O. Uyanna, H. Najafi, Thermal protection systems for space vehicles: A review on technology development, current challenges and future prospects, Acta Astronaut. 176 (2020) 341–356. https://doi.org/10.1016/j.actaastro.2020.06.047.
[10] H.K.M. Al-Jothery, T.M.B. Albarody, P.S.M. Yusoff, M.A. Abdullah, A.R. Hussein, A review of ultra-high temperature materials for thermal protection system, IOP Conf. Ser. Mater. Sci. Eng. 863 (2020) 012003. https://doi.org/10.1088/1757-899X/863/1/012003.
[11] D. Bandivadekar, E. Minisci, Modelling and simulation of transpiration cooling systems for atmospheric re-entry, Aerospace. 7 (2020) 89. https://doi.org/10.3390/aerospace7070089.
[12] G. Akopov, M.T. Yeung, R.B. Kaner, Rediscovering the crystal chemistry of borides, Adv. Mater. 29 (2017) 1604506. https://doi.org/10.1002/adma.201604506.
[13] S.D. Oguntuyi, O.T. Johnson, M.B. Shongwe, Spark plasma sintering of ceramic matrix composite of ZrB2 and TiB2: microstructure, densification, and mechanical properties—A review, Met. Mater. Int. 27 (2021) 2146–2159. https://doi.org/10.1007/s12540-020-00874-8.
[14] S.-Q. Guo, Densification of ZrB2-based composites and their mechanical and physical properties: a review, J. Eur. Ceram. Soc. 29 (2009) 995–1011. https://doi.org/10.1016/j.jeurceramsoc.2008.11.008.
[15] J.K. Sonber, A.K. Suri, Synthesis and consolidation of zirconium diboride: review, Adv. Appl. Ceram. 110 (2011) 321–334. https://doi.org/10.1179/1743676111Y.0000000008.
[16] M. Magnuson, L. Tengdelius, G. Greczynski, L. Hultman, H. Högberg, Chemical bonding in epitaxial ZrB2 studied by X-ray spectroscopy, Thin Solid Films. 649 (2018) 89–96. https://doi.org/10.1016/j.tsf.2018.01.021.
[17] D. Sciti, L. Silvestroni, V. Medri, F. Monteverde, Sintering and densification mechanisms of ultra-high temperature ceramics, Ultra‐High Temperature Ceramics: Materials for Extreme Environment Applications, John Wiley & Sons, Inc, Hoboken. (2014) 112–143. https://doi.org/10.1002/9781118700853.ch6.
[18] W.G. Fahrenholtz, J. Binner, J. Zou, Synthesis of ultra-refractory transition metal diboride compounds, J. Mater. Res. 31 (2016) 2757–2772. https://doi.org/10.1557/jmr.2016.210.
[19] Z. Bahararjmand, M.A. Khalilzadeh, F. Saberi-Movahed, T.H. Lee, J. Wang, et al., Role of Si3N4 on microstructure and hardness of hot-pressed ZrB2−SiC composites, Synth. Sinter. 1 (2021) 34–40. https://doi.org/10.53063/synsint.2021.1113.
[20] S. Haghgooye Shafagh, S. Jafargholinejad, S. Javadian, Beneficial effect of low BN additive on densification and mechanical properties of hot-pressed ZrB2–SiC composites, Synth. Sinter. 1 (2021) 69–75. https://doi.org/10.53063/synsint.2021.1224.
[21] W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, J.A. Zaykoski, Refractory diborides of zirconium and hafnium, J. Am. Ceram. Soc. 90 (2007) 1347–1364. https://doi.org/10.1111/j.1551-2916.2007.01583.x.
[22] F. Monteverde, S. Guicciardi, A. Bellosi, Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Mater. Sci. Eng. A. 346 (2003) 310–319. https://doi.org/10.1016/S0921-5093(02)00520-8.
[23] J. Binner, M. Porter, B. Baker, J. Zou, V. Venkatachalam, et al., Selection, processing, properties and applications of ultra-high temperature ceramic matrix composites, UHTCMCs – a review, Int. Mater. Rev. 65 (2020) 389–444. https://doi.org/10.1080/09506608.2019.1652006.
[24] E.W. Neuman, B.J. Lai, J.L. Watts, G.E. Hilmas, W.G. Fahrenholtz, L. Silvestroni, Processing, microstructure, and mechanical properties of hot‐pressed ZrB 2 ceramics with a complex Zr/Si/O‐based additive, Int. J. Appl. Ceram. Technol. 18 (2021) 2224–2236. https://doi.org/10.1111/ijac.13866.
[25] F. Sadegh Moghanlou, M. Vajdi, M. Sakkaki, S. Azizi, Effect of graphite die geometry on energy consumption during spark plasma sintering of zirconium diboride, Synth. Sinter. 1 (2021) 54–61. https://doi.org/10.53063/synsint.2021.117.
[26] R. Hassan, K. Balani, Densification mechanism of spark plasma sintered ZrB2 and ZrB2-SiC ceramic composites, Mater. Charact. 179 (2021) 111320. https://doi.org/10.1016/j.matchar.2021.111320.
[27] H. Istgaldi, M. Mehrabian, F. Kazemi, B. Nayebi, Reactive spark plasma sintering of ZrB2-TiC composites: Role of nano-sized carbon black additive, Synth. Sinter. 2 (2022) 67–77. https://doi.org/10.53063/synsint.2022.22107.
[28] C.-N. Sun, M.C. Gupta, Laser sintering of ZrB2, J. Am. Ceram. Soc. 91 (2008) 1729–1731. https://doi.org/10.1111/j.1551-2916.2008.02369.x.
[29] J.D. Ford, D.C.T. Pei, High temperature chemical processing via microwave absorption, J. Microw. Power. 2 (1967) 61–64. https://doi.org/10.1080/00222739.1967.11688647.
[30] D.E. Clark, W.H. Sutton, Microwave processing of materials, Annu. Rev. Mater. Sci. 26 (1996) 299–331. https://doi.org/10.1146/annurev.ms.26.080196.001503.
[31] A. Sharma, D.B. Karunakar, Development and investigation of densification behavior of ZrB2–SiC composites through microwave sintering, Mater. Res. Express. 6 (2019) 105072. https://doi.org/10.1088/2053-1591/ab3aca.
[32] M. Oghbaei, O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, J. Alloys Compd. 494 (2010) 175–189. https://doi.org/10.1016/j.jallcom.2010.01.068.
[33] Q.H. Deng, Z.H. Ding, X.F. Shen, S.Y. Du, Q. Huang, Synthesis of ultra-fine zirconium diboride powders by polymer template method following by microwave sintering, Key Eng. Mater. 697 (2016) 49–53. https://doi.org/10.4028/www.scientific.net/KEM.697.49.
[34] Z. Ding, X. Huang, W. Liu, I.J. Kim, Y.-H. Han, Preparation of high-temperature active zirconium boride powders via precursor route and microwave sintering, Adv. Appl. Ceram. 120 (2021) 222–226. https://doi.org/10.1080/17436753.2021.1933839.
[35] S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, E.J. Yadlowsky, M.D. Keitz, Microwave sintering of a ZrB2–B4C particulate ceramic composite, Compos. Part A Appl. Sci. Manuf. 39 (2008) 449–453. https://doi.org/10.1016/j.compositesa.2008.01.003.
[36] A. Sharma, D.B. Karunakar, Parametric optimization of ZrB2–SiC composites sintered through microwave sintering using grey relational Taguchi, Adv. Sci. Eng. Med. 12 (2020) 1328–1333. https://doi.org/10.1166/asem.2020.2598.
[37] H.-L. Wang, C.-A. Wang, D.-L. Chen, H.-L. Xu, H.-X. Lu, et al., Preparation and characterization of ZrB2-SiC ultra-high temperature ceramics by microwave sintering, Front. Mater. Sci. China. 4 (2010) 276–280. https://doi.org/10.1007/s11706-010-0091-3.
[38] A. Sharma, D.B. Karunakar, Influence of MgO addition on mechanical and ablation characteristics of ZrB2–SiC composites developed through microwave sintering, J. Mater. Sci. 56 (2021) 17979–17993. https://doi.org/10.1007/s10853-021-06287-1.
[39] A. Sharma, D.B. Karunakar, Effect of SiC and TiC addition on microstructural and mechanical characteristics of microwave sintered ZrB2 based hybrid composites, Ceram. Int. 47 (2021) 26455–26464. https://doi.org/10.1016/j.ceramint.2021.06.058.
[40] A. Sharma, D.B. Karunakar, Comparative evaluation of microstructural and mechanical properties of microwave and spark plasma sintered ZrB2-SiC-TiC composites, J. Mater. Eng. Perform. 31 (2022) 576–589. https://doi.org/10.1007/s11665-021-06204-2.
[41] A. Sharma, D.B. Karunakar, Influence of TiC addition on ablation and thermal shock behaviour of microwave sintered ZrB2–SiC–TiC composites, Ceram. Int. 48 (2022) 34504–34515. https://doi.org/10.1016/j.ceramint.2022.08.031.

Cited By

Crossref Google Scholar
Microwave sintering of ZrB2-based ceramics: A review
Submitted
2022-11-20
Available online
2023-08-06
How to Cite
Savani, S., Alipour, M., Sharma, A., & Benny Karunakar, D. (2023). Microwave sintering of ZrB2-based ceramics: A review. Synthesis and Sintering, 3(3), 143-152. https://doi.org/10.53063/synsint.2023.33129