Pulsed electric current sintering of TiB2-based ceramics using nitride additives

  • Naeimeh Sadat Peighambardoust 1
  • Çağın Çevik 2
  • Tannaz Assar 3
  • Sunghoon Jung 4
  • Seon Yong Lee 5
  • Joo Hwan Cha 6
  • 1 Koç University Boron and Advanced Materials Applications and Research Center (KUBAM), Sariyer, Istanbul, 34450, Turkey
  • 2 Department of Biophysics, Istanbul University-Cerrahpasa, Istanbul, Turkey
  • 3 Department of Geophysical Engineering, Istanbul Technical University, Istanbul, Turkey
  • 4 Advanced Nano Surface Department, Korea Institute of Materials Science, Changwon, 51508, Republic of Korea
  • 5 Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
  • 6 Innovative Enterprise Cooperation Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea


In this research, various types of nitride additives were incorporated into titanium diboride attaining dense TiB2-based ceramics by field-assisted sintering technique. The addition of different types of nitride additives, namely Si3N4, BN, AlN, and TiN, significantly improved the sinterability of TiB2, achieving near fully dense ceramics. The X-ray diffraction analysis and microstructural evaluation confirmed the presence of the h-BN compound in all specimens. In the TiB2-Si3N4 ceramic, Si3N4 additive reacted with B2O3 oxide, in-situ generating h-BN, and SiO2 phases. Although the h-BN phase was produced in the TiB2-AlN specimen, the main proportion of AlN remained in the sample as an unreacted ex-situ phase. In terms of the TiB2-TiN ceramic, some of the nitrogen and boron atoms could leave the TiN and TiB2 crystalline structures, contributing to the in-situ formation of h-BN.


Download data is not yet available.
Keywords: Titanium diboride, Silicon nitride, Hexagonal boron nitride, Aluminum nitride, Titanium nitride, Field assisted sintering technique


[1] M.M. Mokhayer, M.G. Kakroudi, S.S. Milani, H. Ghiasi, N.P. Vafa, Investigation of AlN addition on the microstructure and mechanical properties of TiB2 ceramics, Ceram. Int. 45 (2019) 16577–16583. https://doi.org/10.1016/j.ceramint.2019.05.196.
[2] F. Ghafuri, M. Ahmadian, R. Emadi, M. Zakeri, Effects of SPS parameters on the densification and mechanical properties of TiB2-SiC composite, Ceram. Int. 45 (2019) 10550–10557. https://doi.org/10.1016/j.ceramint.2019.02.119.
[3] D. Demirskyi, H. Borodianska, Y. Sakka, O. Vasylkiv, Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering, J. Eur. Ceram. Soc. 37 (2017) 393–397. https://doi.org/10.1016/j.jeurceramsoc.2016.08.009.
[4] F. Rezaei, M.G. Kakroudi, V. Shahedifar, N.P. Vafa, M. Golrokhsari, Densification, microstructure and mechanical properties of hot pressed tantalum carbide, Ceram. Int. 43 (2017) 3489–3494. https://doi.org/10.1016/j.ceramint.2016.10.067.
[5] N. Wu, F. Xue, H. Yang, G. Li, F. Luo, J. Ruan, Effects of TiB2 particle size on the microstructure and mechanical properties of TiB2-based composites, Ceram. Int. 45 (2019) 1370–1378. https://doi.org/10.1016/j.ceramint.2018.08.270.
[6] L.A.F. Peçanha, S.N. Monteiro, Í. do V. Tomaz, M.M. de Oliveira, A.M. Ramalho, et al., Characterization of TiB2-AlN composites for application as cutting tool, J. Mater. Res. Technol. 7 (2018) 550–553. https://doi.org/10.1016/j.jmrt.2018.07.010.
[7] T.P. Nguyen, Z. Hamidzadeh Mahaseni, M. Dashti Germi, S.A. Delbari, Q. Van Le, et al., Densification behavior and microstructure development in TiB2 ceramics doped with h-BN, Ceram. Int. (2020) 18970–18975. https://doi.org/10.1016/j.ceramint.2020.04.223.
[8] S.-R. Yan, Z. Lyu, L.K. Foong, Effects of SiC amount and morphology on the properties of TiB2-based composites sintered by hot-pressing, Ceram. Int. (2020) 18813–18825. https://doi.org/10.1016/j.ceramint.2020.04.199.
[9] O. Popov, J. Vleugels, A. Huseynov, V. Vishnyakov, Reactive sintering of TiB2-SiC-CNT ceramics, Ceram. Int. 45 (2019) 22769–22774. https://doi.org/10.1016/j.ceramint.2019.07.317.
[10] F. Rezaei, M.G. Kakroudi, V. Shahedifar, N.P. Vafa, Consolidation and mechanical properties of hot pressed TaC-HfC-VC composites, Ceram. Int. 43 (2017) 15537–15543. https://doi.org/10.1016/j.ceramint.2017.08.103.
[11] K. Farhadi, A. Sabahi Namini, M. Shahedi Asl, A. Mohammadzadeh, M. Ghassemi Kakroudi, Characterization of hot pressed SiC whisker reinforced TiB2 based composites, Int. J. Refract. Met. Hard Mater. 61 (2016) 84–90. https://doi.org/10.1016/j.ijrmhm.2016.08.004.
[12] M. Shahedi Asl, A. Sabahi Namini, M. Ghassemi Kakroudi, Influence of silicon carbide addition on the microstructural development of hot pressed zirconium and titanium diborides, Ceram. Int. 42 (2016) 5375–5381. https://doi.org/10.1016/j.ceramint.2015.12.072.
[13] M. Shahedi Asl, S.A. Delbari, F. Shayesteh, Z. Ahmadi, A. Motallebzadeh, Reactive spark plasma sintering of TiB2–SiC–TiN novel composite, Int. J. Refract. Met. Hard Mater. 81 (2019) 119–126. https://doi.org/10.1016/j.ijrmhm.2019.02.022.
[14] N. Wu, F. Xue, H. Yang, H. Zhou, Y. Li, et al., Effects of WC content on core/rim phases and microstructure of TiB2-TiC-WC-(Co-Ni) cermets, Mater. Today Commun. 25 (2020) 101311. https://doi.org/10.1016/j.mtcomm.2020.101311.
[15] M. Yao, L. Chen, Z. Liu, S. Huo, S. Wang, et al., Two-step sintering of TiB2–40wt%TiN composites, Int. J. Refract. Met. Hard Mater. 84 (2019) 105037. https://doi.org/10.1016/j.ijrmhm.2019.105037.
[16] Z. Yin, J. Yuan, W. Xu, K. Liu, S. Yan, Graphene nanosheets toughened TiB2-based ceramic tool material by spark plasma sintering, Ceram. Int. 44 (2018) 8977–8982. https://doi.org/10.1016/j.ceramint.2018.02.098.
[17] Y. Wang, M. Yao, Z. Hu, H. Li, J.-H. Ouyang, et al., Microstructure and mechanical properties of TiB2-40 wt% TiC composites: Effects of adding a low-temperature hold prior to sintering at high temperatures, Ceram. Int. 44 (2018) 23297–23300. https://doi.org/10.1016/j.ceramint.2018.09.048.
[18] T. Matsuda, Synthesis and sintering of TiC-TiB2 composite powders, Mater. Today Commun. 22 (2020) 101457. https://doi.org/10.1016/j.mtcomm.2020.101457.
[19] K. Cymerman, D. Oleszak, M. Rosinski, A. Michalski, Structure and mechanical properties of TiB2/TiC–Ni composites fabricated by pulse plasma sintering method, Adv. Powder Technol. 29 (2018) 1795–1803. https://doi.org/10.1016/j.apt.2018.04.015.
[20] L.A.F. Júnior, Í.V. Tomaz, M.P. Oliveira, L. Simão, S.N. Monteiro, Development and evaluation of TiB2–AlN ceramic composites sintered by spark plasma, Ceram. Int. 42 (2016) 18718–18723. https://doi.org/10.1016/j.ceramint.2016.09.010.
[21] Y. Liu, Z. Li, Y. Peng, Y. Huang, Z. Huang, D. Zhang, Effect of sintering temperature and TiB2 content on the grain size of B4C-TiB2 composites, Mater. Today Commun. 23 (2020) 100875. https://doi.org/10.1016/j.mtcomm.2019.100875.
[22] N. Wu, F. Xue, J. Wang, H. Yang, F. Luo, J. Ruan, Effect of TiN addition on the microstructure and mechanical properties of TiB2-FeNi based cermets, Mater. Sci. Eng. A. 743 (2019) 546–557. https://doi.org/10.1016/j.msea.2018.11.067.
[23] Z. Fu, R. Koc, Sintering and mechanical properties of TiB2-TiC-Ni using submicron borides and carbides, Mater. Sci. Eng. A. 676 (2016) 278–288. https://doi.org/10.1016/j.msea.2016.08.110.
[24] J. Liu, W. Chen, L. Chen, Z. Xia, H. Xiao, Z. Fu, Microstructure and mechanical behavior of spark plasma sintered TiB2/Fe-15Cr-8Al-20Mn composites, J. Alloys Compd. 747 (2018) 886–894. https://doi.org/10.1016/j.jallcom.2018.03.113.
[25] V. Shahedifar, M. Ghassemi Kakroudi, N.P. Vafa, Characterization of TaC-based fibrous-monolithic ceramics made of fibers with different core/shell volume ratios and orientations, Mater. Sci. Eng. A. 775 (2020) 138935. https://doi.org/10.1016/j.msea.2020.138935.
[26] V. Shahedifar, M.G. Kakroudi, H.R. Baharvandi, F. Rezaei, Investigation of strength, fracture toughness, and crack propagation pattern of TaC-based fibrous monoliths as a function of microstructure architecture, Int. J. Refract. Met. Hard Mater. 78 (2019) 332–339. https://doi.org/10.1016/j.ijrmhm.2018.10.013.
[27] V. Shahedifar, M.G. Kakroudi, Fracture behavior improvement of TaC-based ceramic composites by fibrous structure, Int. J. Refract. Met. Hard Mater. 71 (2018) 15–20. https://doi.org/10.1016/j.ijrmhm.2017.10.025.
[28] Y. Pazhouhanfar, A. Sabahi Namini, S. Shaddel, Z. Ahmadi, M. Shahedi Asl, Combined role of SiC particles and SiC whiskers on the characteristics of spark plasma sintered ZrB2 ceramics, Ceram. Int. 46 (2019) 5773. https://doi.org/10.1016/j.ceramint.2019.11.027.
[29] S. Shaddel, A. Sabahi Namini, Y. Pazhouhanfar, S.A. Delbari, M. Fattahi, M. Shahedi Asl, A microstructural approach to the chemical reactions during the spark plasma sintering of novel TiC–BN ceramics, Ceram. Int. 46 (2020) 15982–15990. https://doi.org/10.1016/j.ceramint.2020.03.148.
[30] T.P. Nguyen, M.D. Germi, Z.H. Mahaseni, S.A. Delbari, Q. Van Le, et al., Enhanced densification of spark plasma sintered TiB2 ceramics with low content AlN additive, Ceram. Int. 46 (2020). 22127–22133. https://doi.org/10.1016/j.ceramint.2020.05.278.
[31] A. Mohammadzadeh, A. Sabahi Namini, M. Azadbeh, A. Motallebzadeh, On the physical and mechanical properties of spark plasma sintered pure Ti and Ti-TiB composite, Mater. Res. Express. 5 (2018) 126512. https://doi.org/10.1088/2053-1591/aae057.
[32] A. Mohammadzadeh, M. Azadbeh, H. Danninger, A.S. Namini, Ti–TiB2 composites consolidated by spark plasma sintering: Reaction mechanism, characteristics of in-situ formed phases and densification behavior, Mater. Chem. Phys. 242 (2020) 122556. https://doi.org/10.1016/j.matchemphys.2019.122556.
[33] F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311. https://doi.org/10.1016/j.ceramint.2018.11.228.
[34] J.-H. Park, Y.-H. Koh, H.-E. Kim, C.S. Hwang, E.S. Kang, Densification and mechanical properties of titanium diboride with silicon nitride as a sintering aid, J. Am. Ceram. Soc. 82 (2004) 3037–3042. https://doi.org/10.1111/j.1151-2916.1999.tb02199.x.
[35] Z. Hamidzadeh Mahaseni, M. Dashti Germi, Z. Ahmadi, M. Shahedi Asl, Microstructural investigation of spark plasma sintered TiB2 ceramics with Si3N4 addition, Ceram. Int. 44 (2018) 13367–13372. https://doi.org/10.1016/j.ceramint.2018.04.171.
[36] S. Rahimi, F. SharifianJazi, A. Esmaeilkhanian, M. Moradi, A.H. Safi Samghabadi, Effect of SiO2 content on Y-TZP/Al2O3 ceramic-nanocomposite properties as potential dental applications, Ceram. Int. 46 (2020) 10910–10916. https://doi.org/10.1016/j.ceramint.2020.01.105.
[37] A. Moghanian, F. Sharifianjazi, P. Abachi, E. Sadeghi, H. Jafarikhorami, A. Sedghi, Production and properties of Cu/TiO2 nano-composites, J. Alloys Compd. 698 (2017) 518–524. https://doi.org/10.1016/j.jallcom.2016.12.180.
[38] M. Alizadeh, F. Sharifianjazi, E. Haghshenasjazi, M. Aghakhani, L. Rajabi, Production of nanosized boron oxide powder by high-energy ball milling, Synth. React. Inorganic, Met. Nano-Metal Chem. 45 (2015) 11–14. https://doi.org/10.1080/15533174.2013.797438.
[39] F. Shayesteh, S.A. Delbari, Z. Ahmadi, M. Shokouhimehr, M. Shahedi Asl, Influence of TiN dopant on microstructure of TiB2 ceramic sintered by spark plasma, Ceram. Int. 45 (2019) 5306–5311. https://doi.org/10.1016/j.ceramint.2018.11.228.
[40] S.A. Decterov, V. Swamy, I.-H. Jung, Thermodynamic modeling of the B2O3–SiO2 and B2O3–Al2O3 systems, Int. J. Mater. Res. 98 (2007) 987–994. https://doi.org/10.3139/146.101555.
[41] M. Kitiwan, A. Ito, T. Goto, Spark plasma sintering of TiN-TiB2 composites, J. Eur. Ceram. Soc. 34 (2014) 197–203. https://doi.org/10.1016/j.jeurceramsoc.2013.08.034.
[42] M. Kitiwan, A. Ito, T. Goto, B deficiency in TiB2 and B solid solution in TiN in TiN–TiB2 composites prepared by spark plasma sintering, J. Eur. Ceram. Soc. 32 (2012) 4021–4024. https://doi.org/10.1016/j.jeurceramsoc.2012.06.024.

Cited By

Crossref Google Scholar
Pulsed electric current sintering of TiB2-based ceramics using nitride additives
How to Cite
Peighambardoust, N. S., Çevik, Çağın, Assar, T., Jung, S., Lee, S. Y., & Cha, J. H. (2021). Pulsed electric current sintering of TiB2-based ceramics using nitride additives. Synthesis and Sintering, 1(1), 28-33. https://doi.org/10.53063/synsint.2021.1112