Recent advances in hydrogen production using MXenes-based metal sulfide photocatalysts

Asieh Akhoondi a,*, Hadi Ghaebi b, Lakshmanan Karuppasamy c, Mohammed M. Rahman d, Panneerselvam Sathishkumar e

a Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
b Department of Mechanical Engineering, Faculty of Engineering, University of Mohaghegh Ardabili, P.O. Box 179, Ardabil, Iran
c Department of Environmental Engineering and Science, Feng Chia University, Taichung 407, Taiwan
d Department of Chemistry, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia
e Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology (VIT), Vellore - 630144, India

ABSTRACT

At present, the composition and crystalline structure of transition metal nitrides or carbides (MXenes) and their derivatives are continuously expanding due to their unique physicochemical properties, especially in the photocatalytic field. Advances over the past four years have led to improved preparation of new MAX phases, resulting in new MXenes with excellent photo-thermal effect, considerable specific surface area, long-term stability and optimum activity. Since MXenes have good electrical conductivity and their bandgap is adjustable under the visible light range, this group is one of the best promising candidates for hydrogen production from photo-splitting of water as an environment-friendly method of converting sunlight to chemical energy. Progress in noble metal-free photocatalyst associated with more understanding of the fundamental mechanism of photocatalysis has enabled a proper choice of cocatalyst with better efficiency. In this study, the photocatalytic production of hydrogen through MXens as a support and co-catalyst on metal sulfide is summarized and discussed. Recent advances in the design and synthesis of MXenes-based metal sulfide nanocomposites to increase the efficiency of photocatalytic hydrogen production are then highlighted. Finally, the challenges and future prospects for the development of MXenes-based metal sulfide composites are outlined.

© 2022 The Authors. Published by Synsint Research Group.

1. Introduction

In the present century, the energy crisis is one of the problems of advanced and developing societies, which has caused many researchers to focus on energy storage. Because the world's need for energy is growing and environmental pollution is having a devastating effect on human life, sustainable and renewable energy sources, such as solar energy, could potentially replace fossil fuels and reduce CO₂ emission [1]. To solve the environmental problems and growing energy crisis, photo-evolutionary hydrogen is a new and appropriate solution that has undergone extensive research. In the last three decades, advances have been made in photocatalysts and the absorption of visible light to convert solar energy directly into chemical energy [2]. One of the applications of semiconductor photocatalysts is the production of hydrogen through the water-split reaction [3]. Other applications include air purification [4] and water treatment through decomposition

* Corresponding author. E-mail address: asieh.akhoondi@gmail.com (A. Akhoondi)
Received 27 February 2022; Received in revised form 28 March 2022; Accepted 29 March 2022.
Peer review under responsibility of Synsint Research Group. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.53063/synsint.2022.21106
of pollutants [5], nitrogen fixation [6], carbon dioxide conversion [7], H2O2 production [8] and more. Photocatalysts have unique properties, including good optical bandgap, thermal and chemical stability, and non-toxicity, which are made from high-permeability elements in earth crust [9].

In the last decades, photocatalysts as photo-reaction accelerators have been utilized in a large variety of chemical reactions. Therefore, in photocatalytic processes, reactions are carried out by a semiconductor as a catalyst (light absorber) that changes the rate of a chemical reaction under irradiation of ultraviolet and visible light range. In photocatalytic process, the main factor in light harvesting and conducting the reaction progress are photocatalysts. Hence, the use of photocatalysts in solar energetic replacement technologies is undeniable for environmental green process. Many semiconductors, including good optical bandgap, thermal and chemical stability, and non-toxicity, which are made from high-permeability elements in earth crust [9].

The MAX phase family, which is mainly intermediate metal carbides, can be peeled into two dimensions known as MXenes. Max phases are layered solids with the general formula M_{n+1}X_nT_y where "M" is an intermediate metal (mostly groups 4 and 5 of periodic table including Ti, Zr, V, Nb, Cr and Mo) with values n=1, 2, 3, "X" is carbon and/or nitrogen and "T" is a surface functional group such as OH, O, Cl, and F [19, 20]. MXenes are constructed through a selective etching of the intermediate metal layer (groups 12 and 14 of the periodic table) of the MAX phase, as shown in Fig. 1. The promising features of MXenes, including oxidation resistance, adjustable structure, high surface area, hydrophilicity, high conductivity, and earth-abundant, cause to attract much attention in the photocatalysis field [21]. Furthermore, the silylation reagents introduce adjustable hydrophilicity to MXene [22].

TiC: MXene was one of the first MXenes to undergo chemical etching, and later MXene variants were made using various methods [23]. Other MXenes such as TiN, TaC, NbC, MoS, NbN, NbC, MoSe, MoS2, and NbC are promising candidates for Li batteries and photocatalytic process. Also, NbC has been used in photocatalytic water splitting [29] and photocatalytic degradation of organic pollutants [30]. It has been shown that MXenes can undergo an electronic transition from metal properties to semiconductors due to the electronegativity of transition metals after functionalization [19].

The special structure, superior photochemical properties, and sufficient metallic conductivity, provided by Ti3C2T x make it a very desirable auxiliary semiconductor for H2 production compared to non-commercial catalysts [31]. MXenes can participate in photocatalytic processes as co-catalysts alongside semiconductors due to low Fermi level of these solid compounds. In order to photoelectrocatalytic and photocatalytic water splitting, research was developed on MXene materials as two-dimensional semiconductor-mediated photocatalysts [32, 33].

The most famous MXene (among more than 70 fabricated MAX phases) is TiC:3, which is used in the generation of hydrogen along with semiconductors such as g-C3N4 [34], WO3 [35] and Ag2S [36] to take entire advantages of MXene hybrids. Meanwhile, MXene/TiO2 based nanocomposite is the most extensively used MXene system for hydrogen generation under the visible light spectrum [37]. Additionally, Ti3C2T x as a 2D transition metal carbide material is one of the best co-catalyst for H2 generation from water splitting reaction, because of its tunable bandgap and high electronic conductivity [38].

Besides, high specific surface area, exposed metallic active sites and tunable terminal functional groups (−F, −O, and −OH) distinguish Ti3C2T x from other co-catalysts. Nevertheless, low photocatalytic activity is a major challenge which restricts the use of photocatalysts [39]. Therefore, MXenes are combined with other semiconductors to improve the separation of charge carriers and enhanced catalytic activity beyond the individual MXene [40, 41]. The most stable MXenes 2D mode belongs to OH*/O*-terminated MXenes that take good charge transfer [42]. In two-dimensional MXenes, oxygen surface atoms act as catalytic activated sites in the reaction of hydrogen evolution, which has compatible interaction potency with H* and by combining a suitable semiconductor, they can have high performance in solar driven hydrogen generation for energy storage. Although extensive research has been made about 2D semiconductor photocatalysts, there are still great challenges to overcome their destruction, charge transfer along with recycling and low-cost efficiency, which inhibits commercial-scale application extremely [43].

Nanoscale metal sulfides and transition metal chalcogenides have many advantages.
applications in optoelectronic and electronic devices, solar cells, batteries and photocatalysis due to their excellent properties and coordinated arrays in the infrastructure [44]. The general easy synthesis procedure, abundance, and low cost of these groups such as FeS$_2$ [45], Cu$_2$S, [46], In$_2$S$_3$ [47] and Ni$_3$S$_2$ [48] cause to have attracted much attention in the field of energy storage [49]. Although these materials have a high quantum yield and short charge transfer distance, they have little efficiency in photocatalytic reactions because they are severely unstable under long-time solar-simulated radiation [50]. Among all semiconductors with different dimensions, zero-dimensional transition metal chalcogenides such as quantum dots, especially metal sulfide (MSs: ZnS, MoS$_2$, etc.), have attracted a lot of consideration due to integrated structural benefits which include: i) numerous active sites; ii) shorter distance of charge transfer; iii) great light absorption in the visible or near-infrared area iv) adjustable bandgap and emission of many e– from the valence band to the conduction band per absorbed photon [51]. However, quantum dots on nanostructure of metal sulfides and metal chalcogenides cause the effects of a strong optical edge, which makes it possible to use them under the visible light spectrum. For the synthesis of these materials, various methods such as surface modification, microwave-assisted solvothermal, precipitation, ion-exchange, hydrothermal method and ultrasonic chemical method are used to be explained below [52, 53].

Metal sulfides semiconductors are a potentially important class of abundant, non-toxic earth materials used to convert solar energy into chemical energy. Pairing MXenes and metal sulfides with appropriate bandgap is a promising approach to increase light absorption and charge separation. Previously there have already been several reports of MXene-based composites on the water splitting with solar energy, but there is no single study on metal sulfide development with current advances in the field. In this review, we study the composite formation and describe the photocatalysis structure and properties of MXenes towards the photocatalytic hydrogen generation. Firstly, the foundations of photocatalytic processes, steps and requirements are explained. Secondly, artificial synthesis methods of metal sulfides have been discussed, followed by metal sulfide-based photocatalysts on MXenes specially Ti$_3$C$_2$. Subsequently, the widespread aspects of the applications of MXene/metal sulfide nano hybrids are emphasized by the environmental and energy production approach, under visible and invisible light illumination. Finally, a summary of the future perspective has been raised from deep communication and understanding of this issue. In addition, the comprehensive overview of the MXene/metal sulfide in the field of hydrogen evolution is presented under various conditions to design an efficient photocatalyst for overcoming the energy problem.

2. The general principles of photocatalysis

A phenomenon in which a semiconductor exposed to light produces electron/hole (e–/h+) pairs is called photocatalysis. The desired products are generated with the participation of both electrons and holes under a redox reaction [54]. In photocatalytic processes, light energy is utilized to absorb photon at first, then produce electron/hole pairs, separate charge carriers and so chemical reaction occurs then charges recombine. When the excited electrons lose their energy by releasing unproductive heat, they combine with the holes again. Semiconductors as photocatalytic materials should have properties such as: 1) suitable bandgap for absorbing visible light with sufficient optical edge potential; 2) ability to separate excited electron/holes pairs produced by photons, 3) chemical stability against photo-corrosion, 4) minimize energy losses during charge transfer and electron/hole recombination, and 5) low production costs.

Some active groups such as superoxide radical (•O$_2^–$), hole (h$^+$) and hydroxyl radical (•OH), participate in reactions [55]. The basic mechanism in photocatalytic processes consists of three stages: production of electron/holes pairs (redox centers), interfacial electron transfer from and to substrates (often coupled with proton-transfer), and conversion of primary redox intermediates into the products [50]. At the beginning of the process in the valence band (VB) with the impact of light, an electron/hole pair is produced. Radiation hitting the surface of the photocatalyst must have enough energy (greater than or equal to the bandgap energy) to produce an electron/hole pair. The electrons are then separated from the holes in the VB and migrate to conduction band and excited in the CB [56]. Factors restrict the photocatalytic activity of semiconductors, such as the low number of reactive sites on the surface, the rapid recombination of electron/hole pairs. Fig. 2 shows several types of single semiconductors with their bandgaps. As shown in this figure, molybdenum sulfide has a relatively weak bandgap for absorbing visible light illumination. So, it is strongly recommended that the MoS$_2$ be modified with CdS or ZnIn$_2$S$_4$ by...
introducing additional components to improve photo-absorption ability [57]. However, all three MoS2, CdS and ZnIn2S4 have a crucial drawback due to their photocorrosive character. Sulfur ions in these semiconductors are oxidized by h+ produced by light instead of water, while metal ions are dissolved in water [58]. MXenes have large surface area that prevent the accumulation of metal sulfide and increase the efficiency of photocatalysis. The large surface area of MXene can reduce metal sulfide agglomeration and enhance the photocatalytic effect. In addition, titanium has a strong redox reaction on the MXenes surface, so that the whole photocatalytic system has a stronger oxidation and reduction ability, thus the goal of enhancing the photocatalytic efficiency is achieved [36].

2.1. Role of MXenes in H2 evolution

MXenes as a support material with hydrophilic surface for hybridization with other semiconductors have excellent H2 evolution activities. Among the MXenes family, Ti3C2Tx differs greatly in chemical properties from other members of this class because it has abnormal surface end groups. The role of Ti3C2Tx with a high specific surface area as co-catalyst in MXene-metal sulfide nanocomposite is to create active sites and terminals at the oxygen surface that act as charge separators for H2 generation from water splitting reaction. Hence, MXene plays an important role in increasing the efficiency charge separation and transfer by modulating the migration of electrons from quantum surfaces [59]. Moreover, hydrogen bonding and electrostatic interaction between contacted MXene and metal sulfide can improve the stability of the photocatalyst [36].

The mechanism of the photocatalytic reaction of water splitting involves the reaction of producing hydrogen and oxygen. The impact of the light beam on the surface of the photocatalyst stimulates the metal sulfide and leads to the formation of electron/hole pairs. At pH 7, the initial transfer of e– to the H+ ion takes place to produce hydrogen, which occurs energetically in the visible region of light. The negative Fermi level is provided by the ohmic contact between MXene and metal sulfide, which causes accumulation of electrons on the surface of co-catalyst and convert H+ to H2. Moreover, the electron donor or scavenger reduces the remaining holes in the valence band of semiconductor. In general, photosplitting of H2O involves some fundamental steps such as photon-absorptions, separation of e–/h+ pairs, influence and transfer of charge carriers, and the final function of catalyst. Applications of co-catalyst and donor factors that are organic solvents prevent the recombination of the electron/hole and suppress the recombination with the consumption of h+. The steps for hydrogen generation from water splitting reaction are as follows:

\begin{align*}
\text{Catalyst} + \hbar \nu &\rightarrow e^- + h^+ \quad (1) \\
2\text{H}_2\text{O} + 4h^+ &\rightarrow \text{O}_2 + 4\text{H}^+ \quad (2) \\
2\text{H}^+ + 2e^- &\rightarrow \text{H}_2 \quad (3) \\
\text{H}_2\text{O} + \hbar \nu &\rightarrow \text{H}_2 + 1/2\text{O}_2 \quad (4)
\end{align*}

In general, the number of active sites enhances with increasing specific surface area. The amount of holes sacrifice and electron/hole pair separation depends on the number of active sites. Therefore, the use of donors will help improve the photocatalytic process and have a new perspective of photocatalytic parameters. Sacrificial agents not only play the role of electron donor but also reduce the charge carriers' recombination rate. Fig. 3 shows the mechanistic route for effective charge separation in Ti3C2-based/metal sulfide in hydrogen evolution under sunlight illumination. Theoretically, semiconductors having a minimum bandgap of 1.23 eV (redox potential) are suitable for efficient photocatalytic H2 evolution to reduce resistances of photo-generated e– and h+ through charge transfers and desired reactions.

2.2. Role of sacrificial agent

The photocatalytic reaction of water splitting for hydrogen evolution is heavily dependent on sacrificial agent. Sacrificial agents or electron donors/hole scavengers play a prominent role next to the selected photocatalyst. In the case of sulfide catalysts, sulfide/sulfite-based sacrificial factors can quickly be absorbed on the photocatalyst surface and absorb h+ in comparison with glucose and alcoholic matter such as methanol, ethanol, and isopropanol [60]. The alkaline environment derived from sulfide and sulfate solutions or amine compounds for hydrogen generation is preferable to glucose and alcohol that produces

Fig. 3. Mechanistic route for effective charge separation in Ti3C2 co-catalyst and metal sulfide and the corresponding photocatalytic H2 production under visible light irradiation.

Water splitting steps:
1- Photon absorption
2- Generation of e–/h+
3- Separation of charge
4- Redox reaction
5- Carriers recombination
a solution with neutral pH. The utililization of Na2S, Na2SO3, Na2S/Na2SO3, triethanolamine (TEOA) and lactic acid as sacrificial factors leads to the photogeneration of hydrogen [61]. Biomass glucose as an electron donor has been used by Li et al. over ZnS-coated ZnIn2S4 [62]. Glucose from cellulose or starch only from the viewpoint of renewable sources is better compared to the Na2S/Na2SO3. Various types of sacrificial reagents possess different adsorption abilities and a different number of available protons. In this context, MXenes acts as co-catalyst and show relative efficiency while reacting with sacrificial reagents. MXenes behave as electron acceptors, owing to the lower Fermi level. Hence, the photogenerated electrons flow from the semiconductor to Ti3C2. By accumulating electrons at the proper surface, which in turn prevents the recombination of charges. The Schottky barrier prevents returning of electrons to the semiconductor.

3. Construction of MXene/metal sulfide

3.1. Preparation of MXenes

One of the groups of two-dimensional materials is MXenes, which are composed of carbide, nitride or carbonitride of intermediate metals [63]. The raw material for making MXenes is MAX phase with the general chemical formula M_{n+1}AX_n. The MAX phase consists of a primary transition metal (M), an element of groups 13 and 14 of the periodic table (A), and carbon or nitrogen (X) and n is mainly 1, 2, or 3 [64, 65]. To prepare MXenes, selective etching of “A” atoms from the ternary layered M_{n+1}AX_n using an acidic solution containing fluorine such as hydrogen fluoride and lithium fluoride is used [66, 67]. For example, Ti3C2Tx multilayer nanosheets are made from pure Ti3C2Tx using the following process: A sample of Ti3AlC2 in hydrogen fluoride is added to HF solution, the following reactions occur:

\[\text{Ti}_3\text{C}_2\text{F}_2 + \text{H}_2 \to \text{Ti}_3\text{C}_2 + \text{AlF}_3 + 3/2 \text{H}_2 \]
(5)

\[\text{Ti}_3\text{C}_2 + \text{H}_2\text{O} \to \text{Ti}_3\text{C}_2(\text{OH})_2 + \text{H}_2 \]
(6)

\[\text{Ti}_3\text{C}_2 + \text{HF} \to \text{Ti}_3\text{C}_2\text{F}_2 + \text{H}_2 \]
(7)

With only the assistance of mild sonication, a new pathway was found to increase delamination and exfoliation of Ti3AlC2 without any additional intercalation. Multilayer Ti3AlC2 etching is performed with LiF + HCl solution easily, and the Ti3CTx suspension is obtained in a short time with gentle sonication [70]. After filtration, two dimensional MXene is ready to be heated. Ahmad et al. have been described various approaches for the synthesis of 2D MXenes such as acid etching method, etching with molten salts, acid etching and intercalation, and electrochemical etching [71]. In addition, Biswas and Alegaonkar comprehensively have investigated fluoride-free synthesis methods as another approach for MXenes construction [72]. Also, Li et al. have etched Ti3AlC2 with KOH in the presence of a small amount of water in order to delamination and make an ideal 2D MXene [73]. However, most of MXene preparation methods use strong acids for etching, which is harmful to humans and the environment [74]. Therefore, developing a safe and environmentally friendly synthesis process for MXenes is crucial.

In the design of Ti3C2Tx composite photocatalysts, coupled material such as transition metal oxide (TMOs) [75], metal-organic framework (MOFs) [76], graphitic carbon nitride (g-C3N4) [77], transient metal sulfide (TMSs) and binary composites [78], have been used. In the following, different methods are described for production of intermediate metal sulfides. In this position, MXenes exhibit two different role as repressing the e-/h+ recombination and presenting active sites for the redox reactions. Moreover, photocatalysts combined with MXenes are an alternative to free noble metal photocatalysts.

3.2. Preparation of MXenes as supported semiconductors

In the various photocatalytic processes, MXene-based semiconductors have been combined with metal sulfide in order to construct nano-semiconductors. Two-dimensional MXenes with high mechanical stability play the role of strong support and co-catalyst for the homogeneous formation of derived substances, good dispersal and limited accumulation of metal sulfide, leading to a shorter distance of charge transfer, which is useful for the separation of photoexcited electron/hole pairs for improved photocatalytic performance. The −OH

Fig. 4. Illustration of Ti3C2Tx preparation.
In general, terminal functional groups, which depend on the synthesis product crystals is complete. The effect of temperature and pressure rises. Over time, during the stirring of the mixture, the growth of the above the boiling point of water, so the pressure inside the autoclave.

Desired MXene/metal sulfide nanocomposites can be obtained via hydrothermal/solvothermal process, sole-gel method, calcination technique, and mixing procedure.

3.2.1. Hydrothermal/solvothermal process

The basis of hydrothermal synthesis is the dissolution of materials in water, which under the desired temperature and pressure leads to the production of the product [81]. After dissolving in water, the raw materials are placed in a sealed device called an autoclave, which is often made of stainless steel. The solution is heated to a temperature above the boiling point of water, so the pressure inside the autoclave rises. Over time, during the stirring of the mixture, the growth of the product crystals is complete. The effect of temperature and pressure leads to the production of crystalline materials in a single-step process that does not require any treatment [82]. Adjusting the pH can reduce the generation of undesirable products [83]. In such conditions which are possible to easily control the reaction parameters such as temperature and reaction time, heterocomposites can be produced with high crystal allocation in nano-size. Therefore, this method can easily synthesize 2D MXenes supported semiconductors based photocatalysts.

In the typical preparation process, Ti$_3$C$_2$OH is added to distilled water, and then ultrasonic distribution for a few minutes utilizing an ultrasonic cell crusher. CdCl$_2$ and In(NO$_3$)$_3$⋅4H$_2$O are added to the Ti$_3$C$_2$OH solution. After industriously stirring for a while, the indium, and cadmium ions are absorbed to the surface of Ti$_3$C$_2$Tx to create a homogeneous solution (1st mixture). The hexadecyl trimethyl ammonium bromide and thioacetamide are then dissolved in distilled water and stirred for a few minutes to give a second solution. Immediately, the 2nd solution is gently mixed with the first solution and stirred vigorously in an autoclave for a long time under a high temperature hydrothermal process as shown in Fig. 5 [21]. The resulting solution has been heated for several hours at high temperature. The resulting solution has been removed from the autoclave and after cooling, washed with distilled water and alcohol several times and dried in a heater. Thus ZnS/Ti$_3$C$_2$ MXene nanosheets have been produced through solvothermal method. At first, they have dissolved thioacetamide (TAA) in glycerol-ethanol solution and stirred at ambient condition for a few minutes [88]. In the following, ZnCl$_2$ and Ti$_3$C$_2$ have been added in the organic solution and then the suspension transferred into a seal batch reactor and has heated for several hours at high temperature. The resulting solution has been removed from the autoclave and after cooling, washed with distilled water and alcohol several times and dried in a heater. Thus ZnS/Ti$_3$C$_2$ MXene nanosheets have been produced through a method called in-situ decoration for enhanced photocatalytic hydrogen evolution.

Furthermore, alcoholic solutions can be synthesized from syngas to prevent greenhouse gas emissions [89].

3.2.2. Sol-gel method

The chemical deposition method, or sol-gel process, was invented in the 19th century and is known in materials science and engineering as a wet chemical technique for the construction of new composites [90]. In this method, a chemical solution is used as a gel or network precursor. Conventional precursors such as metal chlorides and alkoxides are used to synthesize metal and –O groups- modified MXenes, especially affect the reaction routes. In general, terminal functional groups, which depend on the synthesis method, alter and control the chemical properties of Ti$_3$C$_2$Tx [79]. Most importantly, the performance of the work and the transportation characteristics of MXenes can be manipulated by their surface end groups (–O, –F, –OH), which allows adjustable electronic properties by tuning their surface chemistry, which can control MXenes construction their photocatalytic performance [80]. Desired MXene/metal sulfide nanocomposites can be obtained via hydrothermal/solvothermal process, sole-gel method, calcination technique, and mixing procedure.
sulfides and oxides at the nanoscale. When the precursor solution is passed through the gel, a solid product is formed. The sol-gel method can control the textural and surface properties of composites. The major advantages of this method are the control of product size, porosity and morphology, low operating temperature, simplicity, cost-effectiveness and efficiency to produce a high quality product. The disadvantages of this method are 1) the use of organic solutions that can be toxic; 2) long processing time; 3) the contraction that occurs during processing; 4) residual hydroxyl and/or carbon groups; 5) fine pores [91].

For example, in a typical sol-gel method, Cu2SnS3 has been prepared by thiourea, tin chloride, and copper acetate monohydrate solutions. This mixture has been stirred at a desirable temperature in less than an hour to get a dark yellow solution called CTS mixture [92]. Besides, strontium acetate has been added to 2-methoxy ethanol and lactic acid as a fluxing agent in order to reduce agitating time. The Sr solution is then stirred at a temperature below 100 °C to get a colorless translucent solution. The two prepared solutions were then mixed together and stirred at above room temperature for a while to get a translucent yellow precursor solution. Small amounts of triethanolamine and diethanolamine were mixed with the precursor solution as a filmogen and stabilizer. Tetzlaff et al have also prepared Fe3NisSn nanoparticles via the sol-gel method by metal salts, Ni(NO3)2, and Fe(NO3)3 in distilled water and citric acid to form a gel [93].

3.2.3. Calcination technique

One of the most ordinary thermal methods for synthesizing ceramic materials is calcination. In this method, the materials are heated under controlled conditions. The calcination technique is also utilized to prepare MXene/nanocomposite in which MXene acts as a cocatalyst. Photocatalytic performance is strongly dependent on the calcination temperature [91]. Since the product of most calcination processes is prepared with pre-designed materials, the particle size, aggregation, and phase composition in the product would be approved. It should also be noted that the calcination process can be combined with other methods such as the microwave method that requires heating [86]. However, because of MXenes oxidation at high temperatures and losing their conductivity, the calcination temperature is the most important process parameter [34]. Therefore, milder conditions should be applied in calcination of substances containing MXenes. Hence, appropriate solutions are essential for the design of ultra-strong heterostructural matter that prevents the oxidation of MXenes.

3.2.4. Ultrasonic method

The basis of the ultrasonic technique is acoustic cavitation, which is used in the preparation of new materials with outstanding properties. In a liquid, the formation of a shock wave generated with a physical force, leads to the constitution of bubbles and the growth and bursting of bubbles, as shown in Fig. 6. The sonochemical synthesis of compounds doesn’t require a strong condition (pressure and temperature) or a long time of processing [94].

4. Hydrogen generation via MXenes/metal sulfide

Hydrogen production from the reaction of splitting water under sunlight on the surface of semiconductors is a good way to generate energy because water and sunlight are both renewable. Low-cost photocatalysts, including MXenes, have suitable efficiencies in the hydrogen evolution process, which has a lower Fermi level than other semiconductors. As mentioned earlier, metal sulfides have excellent conduction band and valence band energy levels with high resistance for photocatalysts construction, which are used to produce hydrogen under the visible light illumination. Furthermore, in hybrid systems, MXenes, as a favorable support layer, can be combined with metal sulfides to construct a semiconductor with fine dispersion for increasing photocatalytic activity. In this section, various MXenes-based metal sulfides and their photocatalytic performance in hydrogen generation are summarized. Table 1 presents the diverse photocatalytic activity of MXene/metal sulfide toward H2 generation. TiO2 was one of the first semiconductors used in the photocatalytic splitting of water, used in multiple systems. As shown in Table 1, TiO2 has a significant effect on increasing production efficiency. Metal sulfides with general MxSy formulas (x and y are integers) are derived from the transplant of a metal or semi-metal cation with sulfur ion, which includes a variety of compounds MS, MS2, M3S, M3S2. While bimetallic sulfides with A1nB1Sn stoichiometry are divided into two general categories that have a different structure. The first group with the AB2S4 formula has a cubic spinel structure, and zinc, copper, manganese and so on as divalent metal ions; occupy the metal A site, while the B site is filled with triple metal ions such as indium, cobalt, etc. Several studies claimed that dual metal sulfides (CdIn2S4, ZnIn2S4, etc.) with AB2S4 can be a new class of active photocatalysts under visible light irradiation. These compounds with M2S2 and AB3X4 structure have been listed in Table 1, with different synthesis method, for photogeneration of H2.
Table 1. Summary of MXene/metal sulfide for hydrogen evolution.

<table>
<thead>
<tr>
<th>Photocatalyst system</th>
<th>Synthesis strategy</th>
<th>Light source</th>
<th>Sacrificial reagent</th>
<th>Conditions</th>
<th>Activity (µmol.g⁻¹ h⁻¹)</th>
<th>Note</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CdS & ZnS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CdS/Ti₃C₂ nanosheets</td>
<td>Hydrothermal</td>
<td>300 W Xenon arc lamp, λ>420 nm</td>
<td>18 vol.% lactic acid (LA)</td>
<td>Ambient condition</td>
<td>14342</td>
<td>Quantum efficiency of 40% @420 nm</td>
<td>[95]</td>
</tr>
<tr>
<td>1D/2D CdS-Ti₃C₂</td>
<td>One-step electrostatic self-assembly</td>
<td>300 W Xenon lamp (λ>420 nm)</td>
<td>Ethanol/H₂SO₄</td>
<td>Ambient condition</td>
<td>15400</td>
<td>CH₂(OH)CH is the pivotal radical species during photocatalysis.</td>
<td>[96]</td>
</tr>
<tr>
<td>1D CdS/2D Ti₃C₂</td>
<td>In situ assembling (self-assembly); solvothermal, ultrasonication</td>
<td>300 W Xenon lamp with cut-off filter (λ>420 nm)</td>
<td>10 wt % lactic acid</td>
<td>6 °C</td>
<td>2407</td>
<td>AQY: 35.6 % @ 420 nm</td>
<td>[97]</td>
</tr>
<tr>
<td>2D/2D CdS NS@Ti₃C₂</td>
<td>MXene</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MXene@Au@CdS</td>
<td>Etching/A/solvothermal</td>
<td>300 W Xe lamp, λ > 420 nm; AgNO₃</td>
<td>Lactic acid 10 vol%</td>
<td>Ambient condition</td>
<td>825</td>
<td>Quantum efficiency of 10.2% @450 nm</td>
<td>[100]</td>
</tr>
<tr>
<td>BiVO₄-CdS-Ti₃C₂</td>
<td>Etching by HCl + LiF/Ultrasound treatment/solvothermal treatment</td>
<td>300 W Xe lamp, λ > 420 nm;</td>
<td></td>
<td></td>
<td>866.5</td>
<td></td>
<td>[103]</td>
</tr>
<tr>
<td>Ti₃C₂/TiO₂/MoS₂</td>
<td>Electrostatic self-assembly process and solvothermal method</td>
<td>300 W Xe lamp, λ > 420 nm;</td>
<td>LA</td>
<td></td>
<td>3226</td>
<td></td>
<td>[104]</td>
</tr>
<tr>
<td>ZnS nanoparticles/Ti₃C₂ nanosheets</td>
<td>Etching/ultrasonic exfoliation/solvothermal</td>
<td>300 W Xe lamp, λ > 400 nm; Lactic acid/H₂O=1/4 v/v</td>
<td>Room temperature</td>
<td></td>
<td>502.6</td>
<td>It is evident that ZT₀.75 displays an increased average lifetime</td>
<td>[88]</td>
</tr>
<tr>
<td>ZnS/Ti₃C₂ MXene</td>
<td>Ultrasonic oscillation</td>
<td>300 W Xe lamp, λ<420 nm</td>
<td></td>
<td></td>
<td>212 µmol h⁻¹</td>
<td></td>
<td>[105]</td>
</tr>
<tr>
<td>MoS₂ & WS₂</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti₃C₂/TiO₂/MoS₂ (loading amount 10, 25 and 15 wt%)</td>
<td>Two-step hydrothermal</td>
<td>300 W Xe arc lamp, AM 1.5</td>
<td>Triethanolamine</td>
<td>25 °C</td>
<td>6425.3</td>
<td></td>
<td>[106]</td>
</tr>
<tr>
<td>1T-MoS₂ nanopatch/Ti₃C₂/TiO₂ nanosheet</td>
<td>Hydrothermal</td>
<td>300 W Xe arc lamp, AM-1.5 filter</td>
<td>Acetone/Triethanolamine</td>
<td>25 °C</td>
<td>9738</td>
<td>Quantum efficiency 6.86%</td>
<td>[107]</td>
</tr>
<tr>
<td>Mo₃S₄@TiO₂@Ti₃C₂</td>
<td>Hydrothermal</td>
<td>300 W Xe arc lamp, AM-1.5 filter</td>
<td>Acetone/Triethanolamine</td>
<td></td>
<td>10505.8</td>
<td>Quantum efficiency 7.535%</td>
<td>[108]</td>
</tr>
<tr>
<td>Mo₃S₄/Ti₃C₂</td>
<td>Hydrothermal</td>
<td>300 W Xe lamp, λ>420 nm</td>
<td>CH₃OH</td>
<td></td>
<td>6144.7</td>
<td></td>
<td>[109]</td>
</tr>
<tr>
<td>R-scheme Ti₃C₂ MXene/MoS₂ (NS)</td>
<td>Hydrothermal</td>
<td>300 W Xe arc lamp, λ<420 nm</td>
<td>0.35 M Na₂S, 0.25 M Na₂SO₃</td>
<td>Room temperature, atmospheric pressure</td>
<td>380.2</td>
<td></td>
<td>[110]</td>
</tr>
<tr>
<td>TiO₂@Ti₃C₂@1T-WS₂</td>
<td>Hydrothermal</td>
<td>300 W Xe arc lamp, AM-1.5 filter</td>
<td>Acetone/Triethanolamine</td>
<td>Room temperature</td>
<td>3409.8</td>
<td>Quantum efficiency 2.464%</td>
<td>[111]</td>
</tr>
<tr>
<td>Photocatalyst system</td>
<td>Synthesis strategy</td>
<td>Light source</td>
<td>Sacrificial reagent</td>
<td>Conditions</td>
<td>Activity (µmol.g⁻¹ h⁻¹)</td>
<td>Note</td>
<td>Ref.</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>------</td>
<td>-----</td>
</tr>
<tr>
<td>Pseudobinary metal sulfide semiconductors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnIn₂S₄/TOₓ/Ti₃C₂</td>
<td>2 step hydrothermal</td>
<td>300 W Xenon lamp</td>
<td>0.25 M Na₂SO₃ and 0.35 M Na₂S·9 H₂O</td>
<td>Atmospheric pressure and room temp.</td>
<td>1185.8</td>
<td>The position of the ZIS n-type and TiO₂ conduction bands is slightly more negative than that of Ti₃C₂.</td>
<td>[112]</td>
</tr>
<tr>
<td>ZnIn₂S₄/TOₓ/Ti₃C₂</td>
<td>In situ growth</td>
<td>λ≥420 nm</td>
<td>3475</td>
<td>[113]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZnIn₂S₄/Ti₃C₂(O, OH)</td>
<td>In situ growth/hydrothermal</td>
<td>300 W Xe arc lamp, λ ≥ 420 nm; 0.35 M Na₂S, 0.25 M Na₂SO₃</td>
<td>Room temperature</td>
<td>12983.8</td>
<td>AQE of 8.96% @ 420 nm</td>
<td>[114]</td>
<td></td>
</tr>
<tr>
<td>ZnIn₂S₄/MXene (2.5% wt)</td>
<td>Etching by HF/in-situ growth</td>
<td>300 W Xenon lamp, λ≥ 400 nm</td>
<td>Triethanolamine (10% vol)</td>
<td>8 °C</td>
<td>3042</td>
<td>[115]</td>
<td></td>
</tr>
<tr>
<td>Zn₂₋₅Cd₀₋₅S (2% wt)/TOₐ/TOₓC</td>
<td>Co-precipitation/hydrothermal for Zn₂₋₅Cd₀₋₅S, solid reaction sintering for Ti₃AIC</td>
<td>300 W Xe lamp, λ≥400 nm</td>
<td>0.3 M Na₂SO₃–0.3 M Na₂S</td>
<td>Room temperature</td>
<td>32570</td>
<td>Gibbs free energy of Zn₂₋₅Cd₀₋₅S is higher than oxygen-terminated TiO₂ and Ti₃C.</td>
<td>[117]</td>
</tr>
<tr>
<td>MXene/Zn₀₋₂Cd₁₋₂S</td>
<td>Etching by HF/solvothermal</td>
<td>300 W Xe lamp, λ≥400 nm</td>
<td>Alkaline polyethylene terephthalate (PET) solution</td>
<td></td>
<td>14170</td>
<td>[118]</td>
<td></td>
</tr>
<tr>
<td>Cd₀₋₂Zn₁₋₂S/Ti₃C₂</td>
<td>Etching by HF/Hydrothermal</td>
<td>300 W Xe lamp, λ≥400 nm</td>
<td>0.25 M Na₂SO₃ and 0.35 M Na₂S</td>
<td>Room temp. and vacuum condition</td>
<td>9071</td>
<td>Quantum efficiency 43.28% @ 420 nm</td>
<td>[119]</td>
</tr>
<tr>
<td>Cd₀₋₂Zn₁₋₂S/Ti₃C₂</td>
<td>Etching by HF/hydrothermal</td>
<td>300 W Xe arc lamp, λ > 420 nm</td>
<td>Na₂S and Na₂SO₃ (1:1 v/v)</td>
<td>5 °C</td>
<td>15035.8</td>
<td>The electron trap is created by a Schottky junction and prevents electrons from returning.</td>
<td>[120]</td>
</tr>
<tr>
<td>Cd₀₋₂La₀₋₂S/Ti₃C₂</td>
<td>Etching by Ti₃AIC and ultrasonic exfoliation/in situ growth solvothermal</td>
<td>300 W Xenon lamp, λ > 420 mm; 0.35 M Na₂S and 0.25 M Na₂SO₃</td>
<td>Room temperature</td>
<td>11182.4</td>
<td>AQE of 15.6% @ 420 nm</td>
<td>[121]</td>
<td></td>
</tr>
<tr>
<td>Ti₃C₂</td>
<td>MXene/TOₓ/CuHₓS₄ Schottky-step-scheme (S-scheme) heterojunction</td>
<td>Two-step hydrothermal</td>
<td></td>
<td></td>
<td>356.3</td>
<td>The heterojunction structure can maintain its efficiency in multiple cycles.</td>
<td>[122]</td>
</tr>
<tr>
<td>Miscellaneous metal sulfides</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO₂/Ti₃C₂-MOF derived CoSₓ</td>
<td>Solvothermal</td>
<td>λ ≥ 420 nm</td>
<td>Methanol</td>
<td></td>
<td>950</td>
<td>The color of the sample depends on the amount of Ti₃C₂, the higher its content, the material would be darker and the less light it absorbs.</td>
<td>[123]</td>
</tr>
<tr>
<td>CuS/MXene</td>
<td>Facile wet-chemical procedure</td>
<td>300 W Xe lamp, λ≥420 nm</td>
<td>0.25 M of Na₂SO₃ and 0.35 M of Na₂S</td>
<td></td>
<td>4.2</td>
<td>A sample with a TiS=1:2 ratio has the highest photocatalytic activity in hydrogen production.</td>
<td>[124]</td>
</tr>
</tbody>
</table>
4.1. CdS and ZnS

The structural and bonding shape of CdS and ZnS crystals varies depending on their synthesis method and mineral source [125, 126]. Among numerous semiconductor photocatalyst, CdS is nominated as the most prominent and studied candidate for photosplitting of water [127]. Although CdS has a high charge recombination potential, it is an excellent choice for photocatalyst usage due to its small bandgap and corresponds well with the solar irradiation spectrum [128]. But the disadvantage of ZnS and CdS is photocorrosion, which increases in radiation cycles [129]. Sulfur ions oxidize through holes created by sunlight rays to produce cadmium and zinc ions. Moreover, for enhancing light absorption capacity and stability it is recommended to couple CdS with MXenes for enhancing light harvesting capacity. ZnS as a suitable semiconductor with 3.7 eV bandgap shows suitable physical properties and quantum efficiency. In addition, the unique characteriz of ZnS nanoparticles have led to its widespread use in photocatalytic processes under visible light radiation [130].

CdS and ZnS as transition metal sulfides coupling with Ti3C2Tn have been demonstrated as potential co-catalysts for photocatalytic hydrogen evolution process. In this regard, photocatalytic activity of multidimensional heterojunction of 1D CdS nanorods/2D Ti3C2 nanosheets has been investigated by Xiao et al [97]. They have shown that heterostructure of 1D/2D co-catalyst without any noble metal could be suitable for H2 evolution under visible light spectrum. In another research, it has been prove that without visible light irradiation or CdS-MX photocatalyst no activity toward H2 production [96]. The activity of photocatalytic redox reaction improves in the acidic environment and hydrogen produces due to conversion of ethanol. The rate of hydrogen production in the presence of EtOH and sulfuric acid as electron donor is much higher than lactic acid. Additionally, when utilizing single Ti3C2Tn alone as a catalyst, no reaction accrues, indicating that CdS nanowires are the only photoactive material in the CdS-MXene compound. Also, Chen et al. have shown that the activity of CdS NS@Ti3C2 composite is 4.7 times higher than that of pure CdS NSs under the same conditions [98]. Of course, ZnS/MXene has the advantage of maintaining photocatalytic activity after five test cycles [105] which makes it competitive with CdS.

Nanoparticles of Au as precious noble metal are useful co-catalysts to increase the photocatalytic performance of CdS due to its local surface plasmon resonance. The photoexcited electrons on the surface of the gold can be entered by stimulating surface plasmon to the conductive band of cadmium sulfide, which leads to increased photocatalyst efficiency. Furthermore, the noble metal position also significantly affects H2 evolution during photocatalysis [131]. Furthermore, Ti3C2 boosts the number of active sites and reaction centers for CdS and Au nanoparticles [99]. However, noble metal co-catalyst utilized in photoevolving H2 is high-cost and difficult to obtain. As shown in Table 1, MXene@Au@CdS has the highest hydrogen production rate compared to other photocatalysts. Pore size, pore volume and the BET surface area of Au/CdS/MXene, indicating that loading Au/CdS nanosized with MXenes provides a porous structure and numerous active sites for H2 generation. The illustration of Au/CdS/MXene fabrication and H2 generation is shown in Fig. 7.

4.2. MoS2 & WS2

Other semiconductors such as MoS2 [132] and WS2 [133] from group 6 of the periodic table as a class of transition metal sulfides, which is used in photocatalytic hydrogen evolution. The pairing of these materials with MXenes increases the photocatalytic activity several times compared to single metal sulfide. MoS2 has little oxidation potential so its photocatalytic activity is insufficient. But the MoS2 nanostructure has the ability to change the valence band to increase the efficiency of the photocatalytic process, which has been attributed to the quantum confinement of nanomaterials [134]. Hydrothermally prepared MoS2/Ti3C2 heterostructure composite exhibited the highest hydrogen generation rate, which are 2.3 times higher than those of the pure MoS2 and still maintains high activity after four cycles [109]. The heterostructure, in addition to creating more active sites, effectively reduces recombination of electron/hole pairs.

Titania is one of the most suitable semiconductor in photocatalytic production of hydrogen, along with MXene, has an effective heterogenic structure for the separation of charging carriers. Titania is the only semiconductor that is traditionally prepared via in-situ oxidation, combined with Ti3C2 as a precursor. As ternary systems have been attracted much attention as the hopeful system for enhancing

Fig. 7. Schematic of the MXene@Au@CdS preparation flow chart and energy band structure diagram.
photonexited e^{-} and timely consume h^{+} produced by light and the convenient consumption of holes produced by electron.

4.3. Pseudobinary sulfide solution

Several studies claimed that dual metal sulfides ($CdIn_{x}S_{y}$, $ZnIn_{x}S_{y}$, etc.) with $AB_{2}S_{3}$ can be a new class of active photocatalysts under visible light irradiation. During recent years, $Cd_{x}Zn_{1-x}S$ and $Zn_{x}In_{1-x}S$ as bimetal sulfides have been considered a lot of attention to the production of photocatalytic hydrogen. However, rapid recombination of the electron/hole pairs strongly limits the performance of these single-semiconductors. To fix this disadvantage, the combination of semiconductor photocatalysts with MXenes to build heterojunctions of single-semiconductors. To fix this disadvantage, the combination of semiconductor photocatalysts with MXenes to build heterojunctions of single-semiconductors.

A. Akhoondi et al. SYNTHESIS AND SINTERING 2 (2022) 37-54

To date, there are few studies on the bi-loading strategy of metal sulfides with MXenes. However, loading two metal sulfides imposes a number of layers can be changed easily, the bandgap in this material is adjustable. Therefore, bimetal sulfides are a good alternative to precious noble metals.

One of the bimetal sulfides of interest is $Zn_{x}Cd_{1-x}S$, which has been used in the hydrogen production process under visible light irradiation. This type of sulfide has excellent photocatalytic properties, is corrosion resistant and has the ability to adjust the bandgap. $Zn_{x}Cd_{1-x}S$ photocatalysts are a combination of wurtzite and zinc, which have a unique crystal structure and have recently been used as bimetal calcogenides in the water-splitting reaction. Recently, studies have been conducted to increase the efficiency of hydrogen production by combining this photocatalyst with a base co-catalyst [140]. The solid solution of $Zn_{x}Cd_{1-x}S$ is formed as a result of the structural similarity of cadmium sulfide and zinc sulfide, the high solubility of which has been attributed to this reason [141]. By controlling the stoichiometric coefficient of zinc and cadmium, the band gap of $Zn_{x}Cd_{1-x}S$ can be changed [142].

$Cd_{0.5}Zn_{0.5}S$ is one of the best photocatalysts reported in the hydrogen production process without any co-catalysts under the visible light illumination, which has a high ability to separate charge carriers compared to other photocatalysts [143]. However, by growing $Zn_{x}Cd_{1-x}S$ nanoparticles on TiO$_2$/Ti_3C_2 MXene, hydrogen production is increased more than 10 times [117].

Another type of metal sulfide is $ZnIn_{x}S_{y}$ which has reduced the recombination rate of charge carriers with various strategies such as morphological control, surface modification, doping with metal ions and formation of heterogeneous structure [144]. Huang et al reported that combining this photocatalyst with TiO$_2$/MXene could prevent electron reversal and speed up the transfer of electrons from $ZnIn_{x}S_{y}$ to MXene, as shown in Fig. 8 [112].

4.4. Mixed metal sulfides

To date, there are few studies on the bi-loading strategy of metal sulfides with MXenes. However, loading two metal sulfides imposes a...
strong synergistic enhancement on the separation of charge carriers and transfer in photocatalyst [95]. The results demonstrate the great potential of loading Ti3C2 with other co-catalysts to achieve the synergetic effect of photocatalytic performance. Summary of mixed metal sulfides/MXenes are presented in Table 2.

For example, the Ti3C2/ZnIn2S4/CdS S-scheme photocatalyst exposes hydrogen-evolution rate about 7.32 and 6.77 times higher than those of CdS and ZnIn2S4, respectively (Fig. 9) [145]. The prepared Ti3C2/ZnIn2S4/CdS composite photocatalyst by a two-step solvothermal method exhibits good stability during continuous photocatalytic H2 generation. The S-scheme photocatalytic system can effectively overcome the defects of unitary photocatalyst and a typical type II heterojunction, improve the light absorption range and redox capacity, and promote its charge separation ability.

In another mixed system, Chen et al. have synthesized of CdS/MoS2/MXenes by an easy hydrothermal process for photocatalytic H2 generation [147]. Fig. 10 shows the photocatalytic performance of CdS-MoS2 with the MXene cocatalyst, which is much faster than hydrogen metal sulfide alone. Even MXene-free hybrid photocatalysts are much less efficient, suggesting that MXene plays an effective role in transporting charge carriers and reducing their recombination rate.

Table 3. Mixed metal sulfides co-catalyst with MXene for the photocatalytic H2 evolution.

<table>
<thead>
<tr>
<th>Photocatalyst system</th>
<th>Synthesis strategy</th>
<th>Light source</th>
<th>Sacrificial reagent</th>
<th>Conditions</th>
<th>Activity (µmol.g⁻¹ h⁻¹)</th>
<th>Note</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D/2D ZnIn2S4/CdS S-scheme</td>
<td>Two step solvothermal</td>
<td>300 W Xe lamp, λ > 420 nm</td>
<td>TEOA</td>
<td></td>
<td>8930</td>
<td>AQE of 3.42% at 420 nm</td>
<td>[145]</td>
</tr>
<tr>
<td>Ti3C2(2TiO2)CdS/MoS2</td>
<td>Facile hydrothermal</td>
<td>300 W Xe lamp, λ ≥ 420 nm</td>
<td>Lactic acid 18%</td>
<td></td>
<td>8470</td>
<td></td>
<td>[146]</td>
</tr>
<tr>
<td>CdS-MoS2/Ti3C2 (2.5%)</td>
<td>Hydrothermal/ultrasound</td>
<td>300 W xenon lamp, 0.35 M of Na2SO3 and Na2S, λ ≥ 420 nm</td>
<td></td>
<td></td>
<td>9679</td>
<td>Quantum efficiency of 26.7% @ 420 nm</td>
<td>[147]</td>
</tr>
<tr>
<td>ZnIn2S4/Ti3C2 (1% mol)</td>
<td>Hydrothermal</td>
<td>300 W xenon lamp, λ ≥ 420 nm</td>
<td>Na2S, 0.25 M of Na2S</td>
<td></td>
<td>18560</td>
<td></td>
<td>[95]</td>
</tr>
</tbody>
</table>
5. Conclusions and outlook

In summary, this review highlighted advances over the MXene/metal sulfide composite in the field of photocatalytic H₂ production. The basic principle of photocatalysis and the role of MXenes-based metal sulfide in hydrogen evolution with the design and development of research were described. Moreover, MXenes preparation procedure and metal sulfide synthesis through different method such as hydrothermal, solvothermal and precipitation technique were presented. Furthermore, in the surface of the MXenes-based metal sulfide, which be preserved by terminal groups (i.e., –O, –OH, and –F), the solvent can be easily removed from the surface and the electron/hole pairs rapidly separated in the metal sulfide. However, the highest photocatalytic activity is obtained with Ti₃C₂Tx, having the –O factor group at the end. In general, MXenes act as the electron sink, electronic promoter and electron/hole transporter, to receive the photoexcited e⁻ from semiconductor quickly. Ti₃C₂ is one of the most popular and considered MXenes, due to the appropriate Fermi level, act as a co-catalyst in hydrogen evolution from water splitting reaction. The metal sulfides in the presence of MXene especially Ti₃C₂Tx, have a better efficiency to perform the evolution of hydrogen. Notably, surface terminal groups of Ti₃C₂Tx, and coupling with metal sulfides such as CdS, ZnS, WSe₂, MoS₂, etc. alter photocatalytic properties of Ti₃C₂. Nevertheless, there is still a long way to go to produce on an industrial scale and practical application. The future development of MXenes requires finding a new way to produce in milder conditions that vital lower temperatures and etchant with lower toxicity mixtures, such as LiF–HCl for scalability and stability. However, preparation methods should be developed without the need for HF, which may lead to progress in the properties of MXenes.

Various parameters such as selecting the appropriate photocatalyst, type of sacrificial reagent, design of photo-reactor and radiation source play an important role in the efficiency of the hydrogen production process. The type of photocatalyst directly affects the amount of hydrogen production activity. In addition, different types of sacrificial reagents as electron donors have different ability of proton absorption. As a result, each photocatalyst has a different performance depending on the type of sacrificial reagent. In addition to the reaction parameters, the photocatalyst structure, defect engineering and morphology are involved in achieving higher photocatalytic H₂ production efficiency. The presence of a functional group in Ti₃C₂ can cause many changes in its properties. Also, further functionalization and construction of new functional groups at the end of Ti₃C₂ can improve the photocatalytic properties. Moreover, photocatalytic activity can be further enhanced by coupling with novel metal sulfides and boost their potential as co-catalyst for energy storage. Through structural engineering, the lifespan of the photocatalyst and its stability for use in multiple cycles should be increased. In MXene synthesis, morphological control can be an effective factor in increasing the number of active sites. Pieced MXenes with different morphological structures such as nanorods, quantum dots, and spheres have a larger surface area than a multilayer structure. Therefore, more research should be developed on structural and morphological control.

With the development of material description techniques, the analysis of MXenes structures will become better and easier, both quantitatively and qualitatively under the photocatalysis process. Along with the study of MXenes-based metal sulfides that play a key role in photocatalytic activity, the impress of the terminal MXenes functional group must also be carefully considered. In this regard, it is necessary to understand the physicochemical characteristic of sulfide photocatalysts based on MXenes types. It seems that in the field of energy production and solving the challenges of fossil fuels, photocatalysts composed of metal sulfides, along with the co-catalyst MXenes, can have a promising future for the production of green hydrogen, but extensive research must be done for developing and industrialize the process.

References

[89] X. Liu, Q. Liu, C. Chen, Ultrasonic oscillation synthesized ZnS nanoparticles/layered MXene sheet with outstanding photocatalytic
activity under visible light, Vacuum. 183 (2021) 109834.

https://doi.org/10.1016/j.apcatb.2019.01.051.

https://doi.org/10.1039/C9QM00608C.

https://doi.org/10.1186/s40820-019-0339-0.

https://doi.org/10.1002/ange.202002136.

[115] M. Ou, J. Li, Y. Chen, et al., Formation of noble-metal-free 2D/2D ZnIn2S5m+3 (m = 1, 2, 3)/MXene Schottky heterojunction improve the photocatalytic hydrogen production of CdS Nanorods, J. Phys. Chem. C. 124 (2020) 130170.
https://doi.org/10.1021/acs.jpcc.0c03411.

https://doi.org/10.1002/advs.202103715.

[119] G. Zeng, Y. Cao, Y. Wu, et al., Cd0.5Zn0.5S/Ti3C2 MXene as a Schottky catalyst for highly efficient photocatalytic hydrogen evolution in seawater, Appl. Materialstoday. 22 (2021) 100926.

