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A B S T R A C T 
 

KEYWORDS 

A fully dense ZrB2–30 vol% SiC composite containing 5 wt% Si3N4 and 4 wt% phenolic resin 
(1.6 wt% carbon) was sintered using the hot-pressing route under the external pressure of       
10 MPa at 1900 °C for 2 h. The microstructural evolution and interfacial phenomena were 
scrutinized using advanced microscopy facilities such as high-resolution transmission electron 
microscopy (HRTEM) and field emission scanning electron microscopy (FESEM). The 
FESEM images showed the ZrB2 and SiC grains without any evidence of Si3N4. The formation 
of the hexagonal BN (hBN) phase was proven in the sintered composite. The hBN nanosheets 
had a graphite-like morphology with an average thickness of 20 nm. This phase has a 
perpendicular orientation to the pressure direction and prevents abnormal ZrB2 grain growth. 
Two types of ZrB2/SiC interfaces were detected, which exhibited an amorphous phase along 
with the grain boundary and a clean/smooth interface, resulting from the Si3N4 addition. 
HRTEM and inverse fast Fourier transform (IFFT) observations disclosed that the d-spacing 
value in the ZrB2 grain (0.335 nm) is higher than those reported in the literature. Furthermore, 
it was found that the exerted pressure during the sintering distorted atomic planes. The 
presence of numerous dislocations within the ZrB2 grains confirmed dislocation creep as the 
main densification mechanism. 
© 2023 The Authors. Published by Synsint Research Group. 
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 Introduction 1.

Non-oxide ceramics including nitride, carbide, and boride compounds 
of a few transition metal elements are categorized as ultra-high 
temperature ceramics (UHTCs). Based on their significant combination 
of characteristics such as high strength, high hardness, acceptable 
thermal shock resistance, high melting point, and machinability,      
these   ceramics   attracted   a   considerable   amount   of   attention   in  
applications   like   aerospace   vehicles,   propulsion   systems,   and  in 

 
general,   high-temperature   industries   [1–5].   Among   the    UHTCs, 
ZrB2-based ceramics are in priority and are the best candidates for 
applications like thermal protection systems (TPS) or refractory 
crucibles [6]. Despite favorable features of ZrB2-based materials, some 
deficiencies, such as low sinterability because of covalent strong bonds, 
relatively low fracture toughness, and poor oxidation resistance, restrict 
the ZrB2-based ceramics utilization in many industries [7]. The solution 
to improve the properties, as mentioned above, is the addition of a 
secondary phase. Many studies have been carried out on the effect of 
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various reinforcements like zirconium carbide (ZrC), silicon carbide 
(SiC), and other materials to reduce the sintering temperature and 
improve the densification behavior [8, 9].  
SiC additive has shown a remarkable improvement in mechanical 
properties, densification behavior, and sinterability than other 
secondary phases to the ZrB2-based composites. As this category of 
UHTCs attracted lots of attention, many researchers studied different 
fabrication methods to achieve the highest density and most favorable 
properties. The main fabrication methods are hot pressing (HP) [10], 
spark plasma sintering (SPS) [11], and pressureless sintering (PS) [12]. 
However, HP and SPS are those that can lead to fully dense composites 
because of the applied pressure; nevertheless, sintering via the PS 
technique can result in components with complex geometries. 
However, achieving this goal by PS requires machining, which takes 
more time and increases the final cost of the components. Therefore, 
HP is considered the most favorable method to sinter ZrB2–SiC 
ceramics [16–18]. Besides selecting the most suitable sintering method, 
using sintering additives can also be beneficial in improving the 
densification behavior by activation of various densification 
mechanisms. Considering the ZrB2–SiC system, the most studied 
additives in the literature are carbides (ZrC [16], B4C [17], and         
WC [18] ), nitrides (ZrN [19], and HfN [20]), disilicides (MoSi2 [21], 
TaSi2 [22], and ZrSi2 [23]), oxides (ZrO2 [24] and Y2O3 [25]), carbon 
black [26], carbon fiber [27], etc. 
Many investigations have been done on nitride additives' effect on 
mechanical and microstructural properties and densification behavior. 
The introduction of ZrN to the ZrB2–SiC composites caused the in-situ 
formation of hBN flakes that increased the porosity level and lowered 
the Vickers hardness compared to the ZrB2–SiC UHTCs; however, 
owing to the homogeneous distribution of hBN flakes in the grain 
boundary zones, the growth of ZrB2 and Zr(C,N) grains was restricted 
over sintering, resulting in good flexural strength and high fracture 
toughness [19]. In a study done by Monteverde et al. [20], the addition 
of 3 vol% HfN assisted the achievement of composites with almost 
zero percentage of porosity. HfN had a significant contribution to the 
sintering process as nitrides tend to consume the oxygen content of 
surface-oxidized phases [20]. Introducing 1 wt% AlN into the        
ZrB2–SiC system improved the densification behavior by activating the 
liquid sintering mechanism, which occurred because of metakaolinite 
spinel layers [28]. The role of BN additive on the mechanical 
performance and densification of ZrB2–SiC revealed that a reaction 
between BN and ZrO2 surface oxide could be a reason for the 
densification improvement and achieving a ~99.8% relative density in 
the sample with 2.5 vol% BN; however, it is reported that an excessive 
amount of BN (> 5 vol%) has a destructive influence on the 
consolidation behavior, deteriorating mechanical properties [29]. 
To the author’s best knowledge, there are a few studies on the influence 
of Si3N4 on the sinterability, densification, mechanical properties, and 
microstructural evolution in ZrB2–SiC ceramics [28, 30–32]. As a 
whole, in all the referenced papers, a nearly fully dense composite and 
well-densified microstructure compared to the additive-free ZrB2 
ceramic was obtained. Furthermore, fine zirconium diboride grains 
with interfacial phases, mostly located at triple points, were recorded; 
however, there is no in-depth investigation using the high-resolution 
electron transmission microscopy revealing all the phases' 
characteristics and interfaces of hot-pressed ZrB2–SiC–Si3N4 UHTCs. 
Therefore, the primary goal of this research is to investigate and detect 
the probably formed phases in the hot-pressed sample. Besides, hBN 

nanosheet formation and their morphology will be discussed. The grain 
boundary’s features, in-situ firmed phases, the interface between ZrB2 
and SiC grains, and textural analysis will be explained. 

 Experimental methodology 2.

2.1. Materials and processes 

As-received materials used in this work are presented in Table 1.        
30 vol% SiC, 4 wt% Resol. 800 (a phenolic resin made in Iran Polymer 
and Petrochemical Institute) as a binder, 5 wt% Si3N4, and the balanced 
amount of ZrB2 were balled mixed in the ethanol medium using 
zirconia cup and balls for 1 h at the speed of 90 rpm. Then, the powder 
mixture was dried at 90 °C on an HMS 14 rotary evaporator (Tebazma 
Co., Iran) for 2 h so that the ethanol content was removed, and the 
agglomerated particles broke down. The dried powder mixture was 
then passed through a metallic sieve (mesh: 100). Hot-press sintering 
was conducted in a BN-coated graphite die to avoid any possible 
reactions between the powder mixture and the carbonaceous die. To 
pyrolyze the phenolic resin, the samples were heated with a heating 
rate of 20 °C/min up to 900 °C, and then, the sample was hot-pressed in 
a vacuum chamber (5×10-2 Pa) by exerting a pressure of 10 MPa for 2 h 
at 1900 °C. The ceramic was cooled down after unloading to room 
temperature with a 5 °C/min cooling rate. 

2.2. Characterization 

Using the Archimedes method, the bulk density measurement was 
performed. The relative density was achieved by dividing the measured 
density by the theoretical one, obtained by the mean of the rule of 
mixture. The initial powders and sintered sample were phase-analyzed 
using a Philip PW1800 X-ray diffractometer (XRD) at a current of      
30 mA, a voltage of 40 kV, and a wavelength of λ=1.54 Å. The 
microstructural characterization and chemical analysis of the              
as-sintered sample were conducted using a FESEM (Mira3 Tescan, 
Czech Republic) and an energy dispersive spectroscopy (EDS). The 
TEM sample preparation was carried out via focusing ion beam (FIB) 
technology, and a Gatan Microscopy Suite (Ametek, USA,               
ver. 2.11.1404.0.) was utilized to take the HRTEM figures. 

 Results and discussion 3.

According to the SEM images (not shown here) taken from the starting 
powders used to fabricate the ZrB2–SiC–Si3N4 sample, it is observed 
that ZrB2 is in the form of angular particles; however, the SiC and 
Si3N4 powders have irregular morphology. The average ZrB2, SiC, and 
Si3N4 particle sizes harmonize with the manufacturers' reported values. 
Although it has been stated in other studies that the surfaces of SiC and 
ZrB2 particles are covered with oxide phases such as SiO2, B2O3, and 
ZrO2 [33], they could not be detected by XRD because of the low 
content of such phases. 

Table 1. Raw materials data used in this study. 

Powder Average particle size (μm) Purity (%) 

ZrB2 2  > 99 

α-SiC 5  > 99 

Si3N4 0.6  > 97 
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It has been reported that the presence of the SiC phase and the residual 
C, as a result of phenolic resin decomposition, improves the density of 
the ZrB2 ceramics [28]. Moreover, adding Si3N4 enhanced the 
densification during the sintering [34]. It is vital to eliminate the 
surface oxides from the initial powders, as the mentioned impurities 
encourage grain coarsening. The residual carbon content can eliminate 
some surface contaminations, according to Eqs. 1 and 2.  

ZrO2 + B2O3(l) + 5C = 5CO(g) + ZrB2     (1)  

SiO2 + 3C = 2CO(g) + SiC      (2) 

Carbon monoxide can escape out because of the vacuum condition 
during hot pressing. The oxide phases are reduced to fine ZrB2 and SiC 
particles that can assist in achieving a density level close to the 
theoretical density. Also, the reaction between the Si3N4 additive and 
the B2O3 phase (Eq. 3) can lead to the formation of the boron nitride 
ingredient at the interface of ZrB2 grains. The morphology, properties, 
and formation mechanism of boron nitride will be provided later. 
Depending on the residual amount of Si3N4 and C after Eqs. 1–3, two 
carbide phases, along with boron nitride and N2 gas, may form based 
on Eqs. 4 and 5. The formation of the interfacial BN phase prevents 
ZrB2 grains from excessive growth. 

Si3N4 + 2B2O3 = 4BN + 3SiO2      (3) 

Si3N4 + ZrB2 + 4C = ZrC + 2BN + 3SiC + N2(g)    (4) 

Si3N4 + 3C = 3SiC + 2N2(g)      (5) 

Therefore, residual carbon and Si3N4 additive’s role as oxide removers 
and reducer agents, which causes fine ZrB2 and SiC formation, led to a 
relative density of > 99.9% in the as-sintered composite. According to 
Eq. 6, the synthesis of zirconia carbide is thermodynamically probable. 
Although carbon monoxide weakens the densification of ZrB2-based 
composites if cannot escape from the sintering composite powders, 
improved sinterability as a result of the formation of fine interfacial 
zirconia carbide can be expected. It should be mentioned that, as     
Eqs. 1–5 possess more negative free Gibbs energy than Eq. 6.  

ZrO2 + 3C = ZrC + 2CO(g)      (6) 

As explained before, the formation of the hBN phase is feasible during 
hot pressing. The hBN is stable from a thermodynamic point of view   
at high temperatures [35], so it is expected to observe excellent 
oxidation resistivity in the as-sintered composite. This phase has a 
morphology similar to graphite, which consists of hexagonal rings in 
the basal plane. Each N or B atom only bonds with B or N, 
respectively. The bonding between B and N atoms is covalent and 
ionic, but the ionic bonding between layers causes weak inter-planar 
bonding [36]. The morphology of the hBN in the hot-press sintered 
ZrB2–SiC–Si3N4 sample and the configuration of hBN platelets are 
presented in Fig. 1.  
Previously, it was published that the growth mechanism of hBN is 
identical to graphite, but in a study done by Zhang et al. [37], based on 
the binary composition feature and lattice symmetry issues in hBN, a 
novel approach to the growth mechanism of this phase was proposed. 
They have stated that B and N atoms diffuse at the edges atom-by-atom 
and this mechanism has a tendency to form two-dimensional hBN in 
the shapes of triangle or hexagonal. In this study, layer-on-layer 
formation of hBN in the form of nanosheets including around 15 
platelets with an average thickness of ~20 nm was recorded using 
FESEM.  
Utilizing TEM and HRTEM techniques, the microstructure of the    
hot-pressed composite was deeply characterized. Figs. 4–7 show the 
ZrB2/SiC and ZrB2/ZrB2 interfaces, TEM, HRTEM, and IFFT images 
from the interior section of a ZrB2 grain, and the morphology of hBN 
nanosheets. ZrB2 is in dark, and SiC is in bright contrasts. Initially, it 
can be observed that no impurities were identified at the ZrB2/SiC 
interfaces and ZrB2/ZrB2grain boundaries, which, as discussed before, 
can be due to the formation of interfacial phases that fill the voids 
during sintering.  
Fig. 2a shows the ZrB2/SiC interface's TEM image covered with an 
amorphous phase between ZrB2 and SiC. Formation of the SiO2 phase 
is thermodynamically probable, according to Eq. 3. Meanwhile, it is a 
natural surface oxide that forms on the SiC particles. Additionally, 
based on the melting point temperature of this phase, at the sintering 
temperature (1900 °C), the presence of this phase in the form of liquid 
is expected. Another type of ZrB2/SiC interface is presented in Fig. 2b. 

Fig. 1. SEM images of a) the layer-on-layer hBN phase at the ZrB2 grain boundary and b) the hBN nanosheets' configuration. 
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It is obvious that this interface is clean and smooth, and as these two 
phases are non-reactive, no sign of chemical interaction was detected. 
The formation of a clean interface with no distortion proves the fact 
that ZrB2 and SiC phases possess the same crystal lattice, as both 
phases have hexagonal structures. Also, it has been reported that 
reduction of oxide phases can lead to the development of clean and 
sharp interfaces [38].  
In Fig. 3, the interface of two ZrB2 neighbors shows a coherent and 
clean boundary. The most significant feature in this image is the 
presence of high dislocation density, which can be categorized into      
i) grain dislocations and ii) grain boundary dislocations. The formation 
of dislocations within the grains, caused by plastic deformation, has 
occurred during the hot pressing process. During sintering, exerting 
pressure aids the densification by compacting the grains, which results 
in generating dislocations [39]. Furthermore, the dislocation formation 
can be due to the different thermal expansion coefficients of SiC 
(4.3×10-6 K-1) and [40] ZrB2 (6.8×10-6 K-1) [41]. The dislocation 

entanglement within the ZrB2 grain located on the right side of Fig. 3 is 
considerable. High-density dislocations can affect mechanical 
properties through strengthening mechanisms by increased dislocation-
induced interactions [42]. Besides, grain boundary dislocations can be 
formed because of the dislocation propagation resulting from the 
aforementioned plastic deformation or can be a result of the 
misorientation between two neighbor grains. Interestingly, most high-
temperature dislocations in the interfaces annihilate, which is why the 
interior area of the ZrB2 grains contains higher dislocation density [43]. 
However, some studies investigated the effect of dislocation density 
increment via work hardening on the mechanical properties 
improvement, but as ceramics possess covalent or ionic bonding, 
dislocation strengthening is not considered the main strengthening 
mechanism [42]. As can be seen, the interface between two ZrB2 grains 
is separated by a thin grain boundary. It can be a reason for obtaining 
high dislocation density grains owing to the lattice mismatch between 
two ZrB2 grains.  

Fig. 2. TEM images of the a) amorphous phase formation along with the ZrB2/SiC interface and b) clean/smooth ZrB2/SiC interface. 

Fig. 3. TEM images of the ZrB2/ZrB2 grain boundary and the network of dislocations within the ZrB2 grains. 
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To fully understand the characteristics of the ZrB2 grains, an HRTEM 
image from the interior section of a ZrB2 grain is shown in Fig. 4a. The 
(001) plane of the ZrB2 grains with a d-spacing value of 0.335 nm 
shows that there is an irregular arrangement in the structure, and 
structural defects can be detected in the crystalline lattice, as a ZrB2 
grain without any structural defects owns a lower d-spacing value    
(22–27 nm) [40, 41]. Fig. 4b is an IFFT image of the region framed in 
Fig. 4a. A few distorted atomic planes and two trapped dislocations 
were detected in such a ZrB2 grain. These dislocations are edge-type     
as an extra half-plane of atoms due to applying pressure distorted in  
the planes of atoms. Also, according to Fig. 3, dislocation lines are 
parallel or perpendicular to each other (edge dislocations), and there is 
almost no sign of curved dislocation (screw dislocations). Fig. 3 and 
Fig. 4b prove that dislocation creep can be one of the main 
densification mechanisms in this ceramic. Other mechanisms, such as 

grain rotation, grain boundary sliding, and plastic yielding, may 
contribute to densification behavior as well [45]. However, some 
researchers are questioning the consideration of dislocation creep as a 
densification mechanism because of restricted slip planes and high 
Peierls stress  [45, 46]. However, a few reports stated high dislocation 
density in the ceramics sintered under high pressure (100 MPa), and 
dislocation creep was characterized as the main densification 
mechanism [46].  
hBN nanosheets with a layer-on-layer morphology are exhibited in   
Fig. 5, a perpendicular view as presented in Fig. 1b. In a study done by 
Pourmohammadie et al. [29], it is mentioned that the hBN platelets 
orient perpendicular to the sintering direction, and their formation in 
the ZrB2 grain boundaries results in ZrB2 grain refinement. Moreover, 
per the Fig. 1 interpretations, the morphology of hBN nanosheets in the 
form of triangles and hexagonal is observable in Fig. 5.  

Fig. 5. TEM images of the morphology of hBN nanosheets. 

Fig. 4. a) HRTEM image of the interior section of a ZrB2 grain revealing the d spacing value and indicating the atomic levels of distortion and 
the formation of edge dislocations and b) IFFT image of the framed section in the left image. 
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 Conclusions 4.

The microstructure of as-sintered ZrB2–SiC UHTC doped with 5 wt% 
Si3N4, manufactured for 2 h under 10 MPa at 1900 °C was 
characterized using FESEM and HRTEM techniques. The following 
conclusions were extracted from microscopic observations: 
• The FESEM image of the microstructure mainly consisted of ZrB2 

and SiC phases with sharp boundaries that proved the non-
reactivity of these phases. 

• Electron microscopy observations revealed the formation of layer-
on-layer hBN nanosheets consisting of 15 platelets with an average 
thickness of  20 nm in the shapes of triangle and hexagonal. 

• Clean or smooth interfaces and amorphous phase-covered 
interfaces detected in the ZrB2/SiC grain boundaries that explained 
the influence of Si3N4 addition and liquid phase formation on the 
grain boundaries. 

• High dislocation density within the ZrB2 grains, which formed 
because of the applied pressure during hot pressing, strengthened 
the fact that dislocation creep can be considered one of the main 
densification mechanisms. 

• The HRTEM image showed a d-spacing of 0.335 nm, which is 
higher than the d-spacing values of ZrB2 reported in other studies. 
Considering the IFFT image, distorted atomic planes and 
dislocations proved the effect of exerted pressure on the atomic 
plane’s order and dislocation formation. 
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