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Machine learning (ML) is a fast-growing field that has vast applications in different areas and 
sintering has had no exemption from that. In this paper, the application of ML methods in 
sintering of the various materials has been reviewed. Based on our review, it was used to 
optimize the sintering process and improve the characteristics of the final product. For instance, 
a supervised learning algorithm was used to predict the temperature and time based on the raw 
material properties and the desired properties of the final product in sintering. Among all ML 
methods, k-nearest neighbor (k-NN), random forest (RF), support vector machine (SVM), 
regression analysis (RA), and artificial neural networks (ANN) had great applications in the 
sintering field. There are a limited number of papers that used deep learning in sintering. In 
conclusion, ML methods can be used to optimize sintering process in energy, cost and time. 
© 2023 The Authors. Published by Synsint Research Group. 
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 Introduction 1.

Sintering is a process of applying pressure or heat to a combination of 
materials, compacting them and forming a solid mass. It is a common 
process in the manufacturing industry, involving the heating and 
cooling of materials to form a solid mass. It is used in various fields 
such as metallurgy, ceramics, and powder metallurgy [1]. In recent 
years, machine learning (ML) tools have emerged as a powerful 
technology for optimizing the sintering process, improving product 
quality, and reducing costs. It is used to improve the efficiency and 
accuracy of various processes in manufacturing [2]. The application of 
ML in sintering processes is gaining more attention due to its potential 
to enhance the performance and quality of sintered products while 
reducing manufacturing costs. By analyzing large amounts of data, ML 
algorithms can identify patterns and relationships that can be used to 
optimize sintering conditions, predict material properties, and improve 
product quality. In this way, ML has the potential to revolutionize the 
sintering process, making it faster, more efficient, and more cost-
effective [2]. 
In sintering, ML algorithms are utilized to optimize the parameters  and 

 
improve the characteristics of the final product. Some examples of how 
ML can be applied in sintering include: 1) Predictive modeling: 
Supervised learning algorithms are used to predict the process 
temperature and time based on the raw material parameters and the 
desired properties of the final product. This helps improve the sintering 
process and the properties of the final product [3–5]. 2) Quality control: 
ML algorithms are used to cluster similar materials and identify 
patterns in the sintering data. This helps identify and correct any issues 
with the sintering process, such as non-uniform heating or cooling [6]. 
3) Real-time control: Reinforcement learning algorithms are utilized to 
perform real-time controlling of the sintering process and make 
adjustments as needed to improve the properties of the final product 
[7]. 4) Microstructural analysis: ML methods are used to analyze the 
microstructure of the final product and identify any microstructural 
features that may be affecting the properties of the final product [8, 9].  
In general, ML algorithms are used to optimize the sintering process, 
and make it a cost- and energy-effective process [10]. Some of the 
commonly used ML tools in sintering are: 1) Artificial neural network 
(ANN) [11]: It is a subgroup of ML methods that can learn complex 
patterns and relationships in data. In sintering, ANN can be used to 
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anticipate the characteristics of the product based on the raw materials 
properties and process parameters. 2) Support vector machine (SVM) 
[12]: it is a type of supervised ML tool that is utilized for classification 
and prediction tasks. In sintering, SVM can be used to classify raw 
materials based on their properties and predict the properties of the 
final product. 3) Decision tree (DT) [13, 14]: In sintering, it is used to 
classify the materials based on their similarities or to predict the output 
material’s properties or type. 4) Random forest (RF) [14, 15]: It is an 
ensemble learning tool that combines several DTs to improve 
prediction accuracy. In sintering, RFs are used to predict the quality of 
the final product based on multiple input variables. 5) Genetic 
algorithm [16, 17]: It is a type of optimization algorithm that is used to 
find the optimal values of process parameters. In sintering, genetic 
algorithms can be used to optimize the process parameters to improve 
product quality and reduce costs. 6) Deep learning [18–20]: It is used to 
improve the efficiency and quality of the sintering and to analyze the 
microstructure of sintered materials. By analyzing images of the 
microstructure, deep learning models can identify defects and predict 
the mechanical characteristics of the material. This information can be 
used to improve the design of sintered parts and to ensure that they 
meet the required specifications. Overall, the use of ML tools in 
sintering is still a developing field, and there is potential for further 
research and innovation in this area. 
In this study, we review all the works that used ML tools to develop a 
new product and decrease the cost of production. In what follows, in 
method section we elaborate on search startegy, and the studies were 
investigated in this study. Next, we classified and synthezied the 
information inside these papers in the results and conclusion section.  

 Methods 2.

2.1. Literature search 

A comprehensive literature search was performed using different 
electronic databases, including Web of Science, Scopus, and Google 
Scholar. The search terms used were "machine learning", "artificial 
intelligence", "deep learning", "ceramics sintering", and "sintering 
process". The search was limited to articles published between 2010 
and 2023. The articles were screened for relevance based on their title, 
abstract, and keywords. Inclusion Criteria were: 1) They were written 
in English, 2) They focused on the use of ML techniques in sintering, 
3) They presented original research. 
The Exclusion Criteria were as follows: 1) They were not related to 
sintering or ML, 2) They are conference papers, 3) They are review 
papers, and 4) They are not a full text. Fig. 1 demonstrates the searhc 
startegy of this study. Based on our search criteria, we could access to 
100 papers. In the first screening stage, 40 papers excluded because of 
duplicate reports, non-English language, published before 2010 and 
were not full text. In the next screening stage, 21 papers were excluded 
as they were conference and review papers, and finally 5 more papers 
were removed from our collection since they did not use ML in 
sintering applications.  
The papers that were reviewed are listed in Table1. Finally, 34 papers 
which met the inclusion and exclusion criteria were further analyzed 
and then data were extracted regarding the research aim and 
application, the type of ML techniques used, the sintering process 
parameters, the  type  of  materials  investigated,  and  the  performance  

Records removed before screening (n= 40): 
Duplicate records 

Non-English papers 
Before 2010 
No full text 

Records retrieved in Web of Science, Scopus, 
and Google Scholar ("machine learning" or 

"artificial intelligence" or "deep learning") and 
("ceramics sintering" or "sintering process”) 

(n=100) 

Records excluded (n=21) 

Reason 1: conference 

Reason 2: reviews 
Reports screened (n=60) 

Reports assessed for eligibility (n=39) 

Studies included in quantitative analysis (n=34) 

Records excluded (n=5) 

Reason 1: not used ML  

Reason 2: not used sintering 

Fig. 1. The used search strategy to find related papers. 
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Table 1. Studies used ML for sintering. 

Authors Goal Material ML 

Features Type* Performance 

Mallick et al. 
[2] 

Predict the productivity of sinter 
machine 

Steel plant Input: I/O fines, flux, sinter, drum TI 
Output: sinter productivity 

LR and ANN ANN is the best. 
Accuracy= 80%  

Ly et al. [4] Predict timing of bubble dissolution in 
SLS process 

Bubble Input: size of bubble and domain, diffusion 
coefficient, surface tension, viscosity, initial 
concentration, and chamber pressure 
Output: bubble dissolution time 

EDT Bagged 
EDT Boosted 

EDT bagged is the 
best. 
R2= 0.988 

Zhicheng      
et al. [5] 

Predict the dimensional changes of 
metal samples made in sintering 
process 

Low-cost 
metal Material 
extrusion 

Input: layer thickness, sintering temperature, 
printing speed 
Output: length, width, height 

LR, LRI, NN NN is the best.  
R2=0.999 

Angalakuditi 
et al. [6] 

Monitor the intensification process Iron ore Input: machine speed, green mix moisture, 
ignition temperature, and waste gas fan speed 
Output: TI 

NN R2= 0.91 

Jiang et al. [7] Develop a model to find sintering 
parameters 

Iron ore, 
limestone, 
coke 

Input: slag, dolomite, Iron return fine, ash, 
limestone, sintering fine, quicklime, Added 
water 
Output: moisture 

Offline deep 
learning and 
online self-
learning NARX 

NARX is the best. 
RMSE=2.01 

Tang et al. [9] Develop an ML tool that predicts the 
microstructure of materials 

Alumina Input: laser power 
Output: microstructure 

RCWGAN‑GP  Good 

Westphal & 
Seitz [10] 

Classification of powder bed defects  SLS Input: image 
Output: type of defect 

VGG16 and the 
Xception CNN 

VGG16 is the best. 
Accuracy=95.8% 

Sahoo et al. 
[11] 

To predict validation of  physical 
properties of coke  

Iron ore, coke Input: physical parameters 
Output: validation 

ANN Accuracy=99.9% 

Singh et al. 
[12] 

Propose a method to maximize 
sintering productivity and quality 

Iron ore Input: ignition hood temperature, water flow 
rate, trimming flux, trimming solid fuel flow 
rates, strand speed, sinter bed height, suction 
pressure 
Output: TI, productivity, RDI 

Stepwise 
regression, 
SVM, RF, 
MARS 
optimized by 
NSGA-II 

RMSE (TI)=0.72 
RMSE (RDI)=1.9 
RMSE 
(productivity)= 
3.02 

Guo et al. 
[13] 

Develop an ML model to assess if a 
metal structure can be manufactured 
from a given DMLS process 

Metal cellular 
structures 
fabrication 

Input: laser spot size, layer thickness, laser 
power, scanning speed, hatch distance, and 
maximum particle size 
Output: manufacturability 

KNN, DT, RM, 
LR, SVM, MLP, 
SSDLMA 

SSDLMA is the 
best. 
Accuracy= 78.5% 

Kamal & 
Upadhyaya 
[14] 

Show that prior prediction of density 
using an ML tool based on regression 
is an effective method 

Bronze Input: 12 features including powder 
characteristics, material composition, 
processing parameters 
Output: density 

RF, LR, KNN, 
DT 

RF is the best R2 
over 0.9. 

Ramos-Grez 
et al. [15] 

Investigate feasibility of ML tool in 
estimating the steady-state temperature 

Laser power Input: heating-cooling parameters 
Output: temperature of surface 

MLP, SVR, RF MLR and RF are 
the best.    R2=0.98 

Tang et al. 
[18] 

Perform clustering and identification 
on a per-mine sample basis 

Iron ore  Input: texture, geometric and grey scale 
features 

CNN Over 90% 

Liu et al. [19] Designing the whole sintering process Mixture of 
flux, iron ore 
and coke 

Input: process parameters  
Output: the number of sintering returned ore 

Deep NN 
combined TCN 
& DF 

R2=98% 

Kim & Zohdi 
[20] 

Develop a deep learning tool to predict 
the optimal path of the SLS process 

SLS Input: tool path using programming 
Output: best laser path 

CNN Accuracy=93.9% 

Li et al. [21]  Develop a burning state classification 
tool for sintering process  

Rotary kiln Input: gabor filter bank for texture analysis 
Output: burning state 

ELM, MLP, 
PNN, SVM 

ELM is the best. 
Accuracy= 92.75% 

Chen et al. 
[22] 

Develop a prediction model to define 
CCR for sintering 

Iron ore Input: time series of the CCR 
Output: CCR 

RNN and 
JLNELN 

Accuracy= 98.4% 

Abdellahi      
et al. [23] 

Predict porosity and strength of 
scaffolds 

Scaffold Input: pressure, Spacer concentration, type 
and size 
Output: porosity 

GEP Best R2=0.96 
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Table 1. Continued. 

Authors Goal Material ML 

Features Type* Performance 

Wang et al. 
[24] 

Develop a hybrid prediction model for 
sintering of iron ore 

Iron ore Input: 20 parameters (permeability, bed 
height, moisture, etc.) 
Output: TI, BTP, gas solid fuel consumption 

ELM with 
AdaBoost.RT 

Accuracy= 96%  

Yuan et al. 
[25] 

Develop a SDBN to predict quality-
related features of a soft  sensor 

Steel Input: pipes’ pressure and temperature   
Output: FeO content 

SDBN   RMSE= 0.009 

Zhouzhi et al. 
[26] 

Develop a method to  predict sintering 
density of SiC  

SiC Input: heating rate, time and temperature 
history  
Output: density 

DANN MAE=0.13 

Wie et al. 
[27] 

Develop a method to design sintering 
processes 

Artificial 
lightweight 
aggregates 

Input: sintering time and temperature, and 
calcination time 
Output: density 

LR, RF, and SVR SVR is the best. 
Accuracy= 
93.3% 

Boidi et al. 
[28] 

Develop a predictive model using 
experimental data  

Textured and 
porous 
surfaces 

Input: velocity and slide-roll ratio along with 
geometric characteristics of surface 
Output: CoF 

RBF R2=0.935 

Swaroop et al. 
[29] 

Develop a ML tool to predict abnormal 
growth of grains in powdered samples 

Powdered 
sample 

Input: temperature, distance and FWHM of 
peaks, oxide matrix 
Output: abnormal growth 

RF Accuracy= 82% 

Abreu et al. 
[30] 

Model flash sintering process to 
predict the bulk density  

Flash sintering Input: holding time (TH) and electric current 
density (J). 
Output: density 

ANN, KNN, RF, 
SVM 

SVM is the best. 
R=0.62 

Olanipekun   
et al. [31] 

Predict hardness of laser-welded 
sintered stainless steel 

Stainless-steel  Input: welding speed, welding temperature, 
sintering time, and sintering power  
Output: microhardness 

ANN Accuracy= 
0.57% 

Batabyal et al. 
[32] 

Predict phase-field structure using a 
Gaussian process-based model 

Selective laser 
sintering 
process 

Input: 3 laser power setting and three 
different scanning speed settings 
Output: temperature distribution 

Gaussian process 
regression 

RMSE=1.2077 

Kondarage    
et al. [33] 

Develop an automatic X-ray image 
analysis approach  

Glasses and 
ceramics 

Input: density of the glass, diameter change 
of the struts 

Fast RF for 
segmentation 

Accuracy >88% 

Ren et al. [34] Predict strength of sinter drum  Sinter drum Input: contents of Fe, FeO, SiO2, MgO, CaO, 
and Al2O3  
Output: strength 

RM, SVR, NNR, 
RR  

RF is the best. 
LR= 55.1% 

Sadoun et al. 
[35] 

Develop a ML tool to predict the 
impact of Al2O3 on the wear rates of 
Cu-Al2O3  

Situ chemical 
technique 

Input: wear load and speed 
Output: Al2O3 nanoparticles 

RVFL using AHA Accuracy= 
99.55% 

Fan et al. [36] Develop a CNN for classification of 
sintered surfaces 

Sintered 
surfaces 

Input: images 
Output: sintered surfaces 

CNN with HLWS 
Net+ Res HLWS 

Accuracy= 
95.1% 

Jahan et al. 
[37] 

Investigate the effect of processing 
parameters on defects 

Powder bed 
fusion 

Input: scan pattern, laser speed, and laser 
position 
Output: temperature 

Graph-based 
ANN 

- 

Abdalla et al. 
[38] 

Estimate the printability of SLS 
formulations 

170 
combinations 
of 78 materials 

Input: composition and characterization from 
FT-IR, XRPD, DSC 
Output: printability 

RF, LR, SVM, 
MLP, DT, KNN, 
Extr, GB, extreme 
GB 

F1=81.9 
improved to 88.9. 
 

*SVM: Support Vector Machine, ELM: extreme learning machine, PNN: probabilistic neural network , MLP: Multi-layer Perceptron, BTP: burn-through point, CCR: 
comprehensive carbon ratio, RNN: Recurrent Neural Network, JLNELN: Joint Linear-nonlinear Extreme Learning Network, GEP: Gen Expression Programming, EDT Bagged: 
Ensemble Bagged Trees, EDT Boosted: Ensemble Boosted Trees, SDBN: supervised deep belief network, MARS: multivariate adaptive regression spline, TI: Thumber Index, 
RDI: reduction degradation index, NSGA-II: non-dominated  sorting  genetic algorithm II, DANN: domain-adversarial neural network, MSC: Master sintering curve, ECAS: 
electric current assisted sintering, NARX: exogenous, SVR: support vector regression, RBF: Radial Basis Function, CoF: Coefficient of Friction, SLS: selective laser sintering, 
ANN: artificial neural network, AGG: abnormal grain growth, FWHM: full  width at  half maximum, SSDLMA: semi-supervised deep learning based manufacturability 
assessment, DMLS: Direct metal laser sintering, LR: linear regression, LRI: linear regression with interactions, FT-IR : Fourier-transformed infrared spectroscopy, XRPD:  X-
ray powder diffraction, DSC: differential scanning calorimetry, GB: gradient boosting, TCN: convolution al network, DF: deep forest, NN: Nearest Neighbor regression, RR: 
ridge regression, RVFL: random vector functional link, AHA: artificial hummingbird algorithm, HLWS: Hybrid Lightweight Shunt Network. 
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obtained. The data collected from the selected articles was classified 
and analyzed using a narrative approach. In the results section, the 
findings were synthesized to provide an overview of the role of ML in 
the materials sintering. 

2.2. Machine learning steps 

In General, there are some steps involved in a typical ML workflow, 
including [40, 39]: 1) Data Collection: The first step is to collect and 
gather relevant data that will be used to train and test the ML model. 
This data can come from various sources such as public datasets, APIs, 
or internal databases. The number of data should be sufficient so that 
the performance could be high enough. 2) Data Preprocessing: Once 
the data is collected, it needs to be preprocessed to clean and prepare it 
for training the model. This includes tasks such as denoising, removing 
missing values, handling outliers, and scaling features. 3) Feature 
Engineering: This step involves selecting and transforming the relevant 
features or variables that will be used as inputs to the ML model. 
Feature engineering can improve the accuracy and performance of the 
model. To put it in other words, it is one way to select features that are 
the best representee of your data. 4) Model Selection: Choosing the 
right model and ML tool is critical for the success of a ML project. 
There are various types of models, such as regression, classification, 
and clustering, among others. The choice of model depends on the 
problem statement and the type of data available. 5) Training the 
Model: Once the model is selected, it needs to be trained using the 
preprocessed data. During the training process, the model learns from 
the input data and optimizes its parameters to make accurate 
predictions. 6) Hyperparameter Tuning: Hyperparameters are the 
settings of a ML algorithm that cannot be learned from the data, and 
they need to be tuned manually. Tuning the hyperparameters can 
improve the performance of the model. 7) Model Evaluation: After the 
model is trained, it needs to be evaluated using a test dataset to measure 
its performance. The evaluation metrics depend on the problem 
statement and the type of model used. 
These are the general steps involved in a typical ML workflow. 
However, the actual process may vary depending on the problem 
statement, type of data, and the tools and technologies used. In the next 
section, we categorized the previous studies based of the type of ML 
tool, the performance parameter and the material used in sintering. 

 Results 3.

Based on our finding, major applications of ML in sintering are:         
1) Quality control: ML algorithms were used to predict the quality of 
the sinter based on the input raw materials and process parameters. 
This can help operators adjust the process parameters in real-time to 
optimize the sinter quality. 2) Process optimization: ML algorithms can 
be used to analyze large datasets of process variables and historical 
data to identify correlations and patterns. This can help optimize the 
sintering process to improve productivity, reduce energy consumption, 
and minimize waste. 

3.1. Materials 

According to our findings, ML has been used for various materials’ 
sintering with the aim of optimization of sintering process including, 
iron ore fines, coke breeze, limestone, and other additives. The input 
materials used in ML applications will depend on the specific goals of 

the application, but they will typically include a combination of the 
following: 
1- Iron ore fines: Iron ore sintering is a process in which iron ore fines 
are mixed with other materials, such as coke breeze, limestone, and 
other additives, and then agglomerated and heated in a sintering 
furnace to produce a porous, strong, and high-quality sinter [40]. ML 
algorithms can be used to predict sinter quality based on the properties 
of the iron ore fines, such as particle size distribution, chemical 
composition, and mineralogy [6, 12, 18]. 
2- Coke breeze: Coke breeze is a fuel and reducing agent used in 
sintering to provide the necessary heat and reduce the iron oxides [41]. 
ML algorithms can be used to optimize the amount and quality of coke 
breeze used in sintering to reduce energy consumption and improve 
sinter quality [7, 19]. 
3- Limestone: Limestone is a fluxing agent used in sintering to improve 
the properties of the sinter, such as its strength and porosity [42]. ML 
algorithms can be used to optimize the amount and quality of limestone 
used in sintering to improve sinter quality and reduce emissions [7]. 
4- Other metals and additives: some materials like bronze [14], steel 
[25], glass and ceramics [33] have applications in sintering as well and 
ML methods have been used to optimize their sintering process. Other 
additives, such as recycled materials, binders, and lubricants [9, 19], 
may also be used in sintering to improve sinter quality and reduce 
costs. ML algorithms can be used to optimize the use of these additives 
to improve sinter quality and reduce costs. 
Based on reviewed papers, the materials mostly used in ML 
applications in sintering were a combination of iron ore fines, coke 
breeze, limestone, steel, bronze and other materials. 

3.2. Database 

To train the ML model, a large dataset of sintering process parameters 
and the corresponding materials’ properties of the sintered objects is 
required. This data can be obtained through experiments, simulations, 
or a combination of both. In other words, the data can be real data in 
which we need to do experiments in the lab or simulated data whereby 
the data is produced by computers.  
In experimental data, some sensors are used to monitor the sintering 
process and collect data on various parameters such as temperature, 
pressure, and gas flow rates. The sensors can be placed at different 
locations within the sintering furnace to obtain a comprehensive. 
Computational models are used to simulate the sintering process and 
predict the material properties of the sintered objects. These models can 
be based on a variety of methods, such as finite element analysis, 
molecular dynamics, or Monte Carlo simulations. 
In either case, some input parameters are considered to feed into ML 
system. Based on our findings, these input parameters can be 
parameters related to 1) Chemical composition: The chemical 
composition of the raw materials used in sintering, including iron ore 
fines, coke breeze, limestone, and other additives, can have a 
significant impact on the properties of the resulting sinter. ML 
algorithms can be used to predict sinter quality based on the chemical 
composition of the raw materials. 2) Particle size distribution: The 
particle size distribution of the raw materials used in sintering can also 
have a significant impact on sinter quality. ML algorithms can be used 
to predict sinter quality based on the particle size distribution of the 
raw materials. 3) Operating conditions: The operating conditions used 
in the sintering process, including temperature, time, and gas 
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composition, can also have a significant impact on sinter quality. ML 
algorithms can be used to optimize the operating conditions to improve 
sinter quality and reduce energy consumption. 4) Physical properties: 
The physical properties of the raw materials used in sintering, including 
density, porosity, and permeability, can also affect sinter quality. ML 
algorithms can be used to predict sinter quality based on the physical 
properties of the raw materials. 5) Weather and seasonal changes: The 
weather and seasonal changes can impact sintering production, for 
example, in terms of the moisture content of raw materials or operating 
temperatures. ML algorithms can help to account for these variations 
and their impact on sintering performance. 6) Features of images and 
signals: extraction of some features from images and signals that are 
representative of the data, can help to used advanced detailed features 
in ML.  
Overall, the input parameters used in ML applications in sintering will 
depend on the specific goals of the application, nature, and type of the 
data. Mostly used parameters in ML with the application in sintering 
were parameters related to operating condition, particle size and 
composition of the sample. There were few studies that used features of 
images and signals related to the data.  

3.3. Machine learning applications 

There are so many ML methods that can be used in different 
applications. However, some specific ML algorithms are used to 
analyze the training data and develop a model that can predict the 
material properties of sintered objects based on the process parameters. 
These algorithms can be based on supervised or unsupervised learning, 
and include 1) SVM [12, 13, 30]: It is a powerful classifier that is 
particularly effective in handling high-dimensional data. It has been 
used in sintering applications for tasks such as predicting sinter 
strength and porosity. Based on our findings, it is one of the popular 
methods with good performance among researchers in sintering. 2) 
DTs [13, 14]: They are simple and interpretable classifiers that can 
handle both categorical and numerical data. They are very common and 
are used in sintering applications for tasks such as predicting the 
occurrence of sinter defects. 3) RFs [14, 15, 29, 30, 38]: They are an 
ensemble classifier that combines multiple decision trees to improve 
predictive performance. Hence, they have had a great application in 
sintering with the aim of predicting the quality of the sinter produced 
under different conditions. 4) ANN [5, 30, 31, 37]: It is a flexible 
classifier that can handle both categorical and numerical data and can 
learn complex relationships between input variables. As it can model 
nonlinear relationships between input and output, it has had a great role 
in the prediction of output materials based on the conditions of the 
experiment. 5) Gradient Boosting [38]: It is an ensemble classifier that 
combines multiple weak classifiers to improve predictive performance. 
It is used whenever other classifiers have not desired performance. 
Based on our results, a limited number of research studies have used 
this method by now. 6) RA [5, 13, 14, 32]: It is a statistical method 
used to model the relationship between a dependent variable and one or 
more independent variables. In the context of sintering, regression 
analysis can be used to predict the behavior of the sintering process 
based on various factors such as temperature, time, pressure, and 
composition. As it is one of the basic prediction methods, it has had a 
great application in sintering studies. 7) K-NN [13, 14, 30, 38]: It is a 
popular ML algorithm used in sintering. It is used to predict the 
mechanical properties, density, and other characteristics of sintered 

materials based on microstructural features such as grain size, porosity, 
and phase distribution. 8) Deep learning [11, 18, 20]: the specific type 
of it, convolutional neural network (CNN) has had application in 
sintering. In this method, the input of CNN is the figures of the 
samples. It is used to to develop predictive models that estimate the 
final properties of a sintered material based on its initial properties, 
sintering parameters, and other relevant factors or develop models for 
identifying defects or irregularities in the sintered material, based on 
visual or other measurements. 
In conclusion, the choice of classifier in sintering will depend on the 
specific goals of the application, the nature of the data, and the desired 
balance between accuracy, interpretability, and computational 
efficiency. 

3.4. Performance 

There are several parameters have been utilized to measure the 
performance of ML tools [43]. The accuracy of an ML tool in sintering 
can be measured using various evaluation metrics, depending on the 
specific goals of the application. Some commonly used evaluation 
metrics in sintering applications include: 1) Mean Absolute Error 
(MAE) [44]: MAE is a common metric that measures the average 
absolute difference between the predicted and actual values. This 
metric is commonly used in regression tasks, such as predicting sinter 
strength or porosity. 2) Root Mean Squared Error (RMSE) [25]: RMSE 
is a metric that measures the square root of the average of the squared 
differences between the predicted and actual values. This metric is 
commonly used in regression tasks and penalizes larger errors more 
heavily than MAE. 3) Coefficient of Determination (R-squared or R2) 
[4, 5, 14, 19]: R-squared is a metric that measures the proportion of 
variance in the predicted values that is explained by the input variables. 
This metric is commonly used in regression tasks and provides a 
measure of how well the model fits the data. 4) Classification accuracy 
[21, 24, 33, 35]: It is a common metric that measures the percentage of 
correctly classified instances. This metric is commonly used in 
classification tasks, such as predicting the occurrence of sinter defects. 
5) F1-score [38]: It is a metric that balances precision and recall in 
binary classification tasks. It measures the harmonic mean of precision 
and recall and is commonly used when the classes are imbalanced. It 
has had a limited application in the sintering process ML. 
To conclude, if an ML system has a low error rate (MAE and RMSE) 
and high accuracy, R2 or F1-score, it has higher performance. The 
performance of an ML tool in sintering were often shown using R-
squared, MAE, RMSE, and accuracy. Most studies reported either 
accuracy or MAE, RMSE, and R2 at the same time. There was just one 
study that used the F1-score to demonstrate the performance of the 
developed ML tool. The choice of evaluation metric should be 
carefully considered to ensure that it aligns with the objectives of the 
application and provides a meaningful measure of performance. 

 Conclusions 4.

This study provides a comprehensive overview of the current research 
on the role of ML in sintering. The article highlights the potential 
applications of ML in improving the efficiency and effectiveness of the 
sintering process and also making it a cost- and energy effective 
process. The findings of this review can serve as a foundation for future 
research in this field. 
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