Available online at www.synsint.com

Synthesis and Sintering

ISSN 2564-0186 (Print), ISSN 2564-0194 (Online)

Research article

Synthesis and characterization of aluminum-yttrium perovskite powder via co-precipitation technique

Sara Ahmadi 回

Construction and Minerals Research Group, Technology and Engineering Research Center, Standard Research Institute, Alborz, Iran

ABSTRACT

In this research the YAIO₃ perovskite powder (YAP) was successfully synthesized by coprecipitation route. Co-precipitation synthesis is simple and affordable technique that capable to produce more homogeneous powders. The temperature was lowered to 1400 °C as a result of the first step's investigation into how different mineralizers affect YAlO₃ formation. The next step involved examining the impact of pH on the synthesis process as well as the calcination time and temperature. The optimal conditions for the synthesis of single-phase YAP were subsequently determined. Scanning electron microscopy (SEM), inductively coupled plasma mass spectrometry (ICP-Mass), and X-ray diffraction (XRD) analysis have all been used to characterize the obtained powders. The findings demonstrate that the NaF:MgF2:Li2CO3 (3:2:1 by weight) was the most suitable mineralizer system for formation of YAIO₃ perovskite. In addition, powders of orthorhombic YAP were successfully synthesized at pH=9. The optimal conditions for the preparation of single phase aluminum-yttrium perovskite crystals were found to be calcination at 1400 °C for 4 hours.

© 2022 The Authors. Published by Synsint Research Group.

1. Introduction

The Y_2O_3 -Al₂O₃ system contains compounds with high technological impact, such as YAIO3 orthorhombic perovskite (YAP), Y₃Al₅O₁₂ cubic garnet (YAG), and Y₄Al₂O₉ monoclinic yttrium aluminum oxide (YAM). YAP is recommended for cutting-edge applications such as laser and pigment host matrices, phosphor materials, scintillators, and thermoluminescent detectors due to its valuable features in pure phases and when doped with different rare earth elements. It is challenging to obtain single-phase YAP because YAG formation needs milder conditions and frequently exists as an impurity [1-3].

YAlO₃ is typically orthorhombic and has a perovskite (YAP) structure. The presence of a hexagonal modification (YAH) was also reported in some studies [4, 5]. Additionally, it is stated that while YAM and YAG are stable phases, YAP is semi-stable [3].

The ideal structure of perovskite with the formula of ABO3 is a face-centered cubic (FCC) structure in which the B^{+3} cation with the smaller size is located in the octahedral spaces and has a neighborhood number of 12, while the larger A⁺³ ions are situated in the center of the unit cell. The phase transition in oxide systems is influenced by a number of variables, including raw materials, synthesis techniques, and thermal processes.

Several studies [5, 6] have reported the following sequence of Yttrium aluminates formation reactions with solid state reaction: the reaction between Al₂O₃ and Y₂O₃ proceeds through the diffusion of Al in Y2O3.

$2Y_2O_3 + Al_2O_3 \rightarrow YAM (900-1100 \ ^{\circ}C)$	(1)
--	-----

 $YAM + Al_2O_3 \rightarrow 4YAP (1100-1250 \text{ °C})$ (2)

$$3YAP + Al_2O_3 \rightarrow YAG (1400-1600 \ ^{\circ}C)$$
 (3)

ynthesis Sintering

Perovskite Chemical synthesis Co-precipitation Aluminum-yttrium

^{*} Corresponding author. E-mail address: s.ahmadi@standard.ac.ir (S. Ahmadi)

Received 6 December 2022; Received in revised form 28 December 2022; Accepted 29 December 2022.

Peer review under responsibility of Synsint Research Group. This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.53063/synsint.2022.24135

The phase transformation that occurs during the chemical synthesis method is very different from the one that occurs during the solid state route. Up to a temperature of 850 °C, co-precipitated powders of metal nitrates with a Y:Al molar ratio of 5:3 is amorphous. At 900 °C, hexagonal YAP that contains only a small amount of YAG is stable. As the temperature rises, the amount of YAG increases up to 1000 °C, and at higher temperatures, it crystallizes as a single phase [5].

Sim et al. have synthesized YAG via co-precipitation of nitrates, alkoxide, and modified alkoxide. The phase obtained with various heat treatments is summarized in Table 1. In this table, hexagonal YAIO₃ is shown as YAH [4].

In another research, YAG was synthesized at 800 °C using the coprecipitation method without the formation of any intermediate phase [7].

The orthorhombic YAP crystallization as YAIO₃ is complicated. Hess et al. demonstrated that the orthorhombic YAP crystallization in the glycine-nitrate process includes hexagonal YAP and YAM as intermediate phases. However, with long isothermal heat treatment at high temperatures (1500 °C and 24 hours), the sample contains orthorhombic YAP, and the amount of YAG and YAM is very low. Following is a summary of YAIO₃ crystallization [8]:

 $YAIO_3$ amorphous $\rightarrow YAM \rightarrow YAH \rightarrow YAG \rightarrow orthorhombic YAP$ (4)

In the other research, according to Ramanathan et al.'s report on the processing and characterization of combustion synthesized YAG powders, the as-formed precursor with $Y_3Al_5O_{12}$ stoichiometry heated up to 880 °C was amorphous. It underwent volatile loss and crystallization into YAP and YAG at 920 °C which transformed to pure YAG at 1050 °C [9].

Since 1960, aluminum yttrium garnet and perovskite have gained growing interest due to their remarkable optical applications in laser, microwave, and ultrasonic equipment.

Synthesis of YAP and YAG with solid state reactions requires high temperatures (1800 °C) and lengthy times [10, 11]. The main trend in recent years has been to concentrate on techniques for chemical synthesis like co-precipitation, sol-gel, and solution combustion [12–16]. With better homogeneity, greater level purity, and fewer stoichiometric losses, these synthesis techniques are very helpful in lowering the synthesis temperature. In comparison to other chemical

 Table 1. The phases in aluminum-yttrium system synthesis via different raw materials [4].

Temperature (°C)	erature Nitrate Alkoxide °C) process process		Modified alkoxide process		
775	Amorphous phase	Amorphous phase	Amorphous phase		
800	Amorphous + YAH + YAG	Amorphous phase + YAH	YAH + YAG		
825	YAH + YAG	YAH	YAH + YAG		
850	YAH + YAG	YAH	YAH + YAG		
900	YAH + YAG	YAG + YAH	YAH + YAG		
1000	YAG	YAG + YAM	YAG		
1100	YAG	YAG	YAG + YAM		

methods, the co-precipitation technique is easier to use and requires less expensive raw materials and equipment [16]. Furthermore, it is reported that the mineralizers could reduce the synthesis temperature of YAP up to 1300 °C [17, 18]. However, luminescence properties decrease. In this study, a single-phase yttrium aluminum perovskite was synthesized through the co-precipitation procedure. The effect of pH, time, and temperature and also using the mineralizer was systematically investigated.

2. Experimental procedure

2.1. Starting materials and methods

Yttrium oxide $(Y_2O_3, purity > 99.99\%)$ and aluminum nitrate $(Al(NO_3)_3.9H_2O, purity > 99.9\%)$ were two of the reagent grade chemicals which were used in this study. Furthermore, NaF, MgF₂, KF, BaCO₃, and Li₂CO₃ were used as mineralizers [1, 2, 10, 11].

The YAlO₃ stoichiometry was followed in the preparation of the powders. Initially, a Y(NO₃)₃ solution was made by dissolving Y₂O₃ in diluted, hot nitric acid. A suitable quantity of aluminum nitrate aqueous solution was then added to the Yttrium nitrate solution. The resulting solution became unstable at a constant pH when 25% ammonia was gradually added.

The unstable solution was aged over the course of 24 hours by stirring. After filtering, distilled water was used to rinse the product. The finished product was dried at 100 °C for 24 hours. In an agate mortar, the specimens were made by combining the aforesaid powder with the chosen mineralizers. An electric furnace was used for heat treatment, which was done at various temperatures and times. The specimens were naturally cooled in the furnace after being heated at a rate of 10 °C/min. The flowchart of the described procedure is shown in Fig. 1.

Fig. 1. Flow diagram of the chemical preparation procedure.

Fig. 2. Relationship among charge, pH, and cations equilibrium [21].

2.2. Characterization techniques

An XRD diffractometer (Simense, D500) equipped with a copper cathode was utilized to determine the crystallization behavior of the fired samples. The measurements were carried out in a 2 θ range of 20–45 ° with a scan step of 0.02 ° and a time constant detection of 1 s in each step.

A scanning electron microscope (SEM: Stereoscan S360), equipped with an energy-dispersive X-ray spectrometer was used to analyze the morphology of synthetic powders. STA-1640 (PL-STA-1640) in the air was employed to perform simultaneous thermal analysis (STA). The heating rate was selected as 10 °C/min, and alumina powder was the reference material. The ICP analysis was used to investigate the number of cations in the washed water of precipitation.

3. Results and discussion

3.1. Effect of pH

The simultaneous precipitation of the cations is essential to maximum chemical homogeneity [19, 20], which can create ideal conditions for the formation of the YAIO₃ perovskite structure when using the co-precipitation method.

Fig. 3. XRD pattern of synthesized samples with different pH (p: YAlO₃, G: Y₃Al₂(AlO₄)₃).

Table 2. Results of ICF	analysis of wasł	ned water of precipitation.
-------------------------	------------------	-----------------------------

Element	Solution with pH 7	Solution with pH 9		
Aluminum (ppm)	2047	0.66		
Yttrium (ppm)	1253	0.08		

In this method, with the increase of ammonia, the pH of the solution increases from the acidic state and system precipitate.

To investigate the effect of precipitation pH and complete hydrolysis of yttrium and aluminum and as a result to maintain stoichiometry, two samples were prepared with $YAIO_3$ composition with final pH of 7 and 9. After 24 hours of aging, the precipitations were washed with distilled water.

Table 2 shows the results of the ICP analysis of washed water of precipitation.

According to the table, although in the sample with pH 9, the amount of removed elements during washing is insignificant, the dissolved cations are removed during washing in the sample with pH 7. In the other words, this result confirms that pH 7 is not enough for the complete hydrolysis of the components of the YAIO₃.

Water molecules in an aqueous solution of Z^+ -charged metal ions coordinate with the metal through electrons in their bonding orbitals. In turn, this causes the O-H bonds of bound water molecules to weaken and undergo protonation or hydrolysis depending on the pH (Eq. 5).

$$[M(OH_2)]^{z^+} \to [M-OH]^{(z-1)^+} + H^+ \to [M=O]^{(z-2)^+} + 2H^+$$
(5)

The high rate of hydrolysis for highly reactive metals may call for regulating water content and using nonaqueous solvents. Basic

Fig. 4. SEM images of dried precipitated powder.

Table 3. Composition and melting point of the samples.

Sample code	M1	M2	M3	M4	M5	M6	M7	M8
Composition (weight ratio)	KF	NaF	MgF_2	Li ₂ CO ₃	KF:NaF (1:0.66)	KF:MgF ₂ (1:5)	NaF:MgF ₂ (1:5)	NaF:MgF ₂ :Li ₂ CO ₃ :(3:2:1)
Melting point (°C)	850	990	1270	720	710	778	835	-

conditions can shift the equilibrium to the right and favor the oxo ligands formation, while acidic conditions increase the ligands formation of hydroxo or even stop hydrolysis. In the case of less reactive metals, where an aqueous solution can be easily attained, the hydrolysis extent can be easily controlled by pH. Besides pH, cations of highly charged metal also tend to weaken the O–H bond and permit hydrolysis in bound water. In Fig. 2, the relation among hydrolysis equilibrium, pH, and charge is depicted [21].

Fig. 3 displays the XRD pattern of the dried precipitation following 2 h calcination at 1400 °C. It was observed that in the sample synthesized with pH 7, $Y_3Al_2(AIO_4)_3$ (cubic) phase is the main phase of the system, and the perovskite phase is present as a single phase in the sample synthesized with pH 9.

The scanning electron microscope (SEM) image of the dried powder obtained with pH 9 is shown in Fig. 4. It is evident that the powder is composed of relatively coarse agglomerates.

3.2. Effect of mineralizer

The perovskite structure development without mineralizer necessitates treatment of long isothermal at elevated temperatures, frequently exceeding 1800 °C. Therefore, utilizing an appropriate mineralizer system to accelerate the reactions is strongly recommended. The melting points of the mineralizer systems used in this research are shown in Table 3.

Fig. 5 depicts the XRD patterns of different mineralizers containing YAlO₃ specimens after 2 h of firing at the temperature of 1400 °C. In contrast to the M8 specimen that contains only perovskite, the remaining specimens include an unfavorable phase of cubic $Y_3Al_5O_{12}$. Precipitation of perovskite can only take place at 1400 °C.

Perovskite can only precipitate at 1400 °C by crystallizing from a liquid phase. Hence, it seems that a liquid phase is provided by the

Fig. 5. XRD patterns of samples synthesized with different mineralizers mineralizers (▲YAIO₃, ● Y₃Al₂(AlO₄)₃, ■Y₃Al₅O₁₂).

mineralizers. Such a liquid phase can promote the diffusion rate of pigment ingredients within the initial steps of the heating process, enhance the growth of favorable crystals of YAIO₃, and decrease the temperature of synthesis.

The viscosity and quantity of this liquid phase have a significant impact on this procedure. Because of its low melting temperature (990 °C), sodium fluoride is easily evaporated and escapes from the system. In contrast, the MgF₂ that has a higher melting point (1270 °C) slowly evaporates. In the phase diagram, the M5-M7 mineralizer system that corresponds to the eutectic points of KF-NaF, KF-MgF₂, has a low melting temperature in the range of 710, 778, and 835 °C. Due to their high viscosity, they were ineffective as a mineralizer. It appears that adding Li₂CO₃ to the NaF-MgF₂ binary mineralizer system can reduce the system's melting point and viscosity due to the high field strength and small size of Li ions. However, with a ternary mineralizer system, the processes of dissolution and precipitation from the liquid phase are accelerated and lead to perovskite structure development. As a result, the mineralizer 3% NaF-2% MgF₂-1% Li₂CO₃ (wt%) was chosen as the system of interest in this research.

Fig. 5 depicts the XRD patterns of the fired samples with YAlO₃-based composition and the added mineralizers. As can be seen in Fig. 5, the only crystalline phase identified in the sample is once again perovskite. It means that the chosen composition has been appropriate to form the perovskite structure. Other researchers have obtained similar results using different mineralizers [11, 22].

3.3. Calcination temperature

The STA thermograph of the dried powder with 6 wt% of M8 mineralizer is shown in Fig. 6. It can be observed that up to 600 °C, the precipitation of hydroxides has turned into oxide, which is associated with a 40% weight loss. The weight loss in the TG diagram in this temperature range is related to the release of absorbed water, the release of crystalline water, the decomposition of nitrates, and the decomposition of hydroxides. The exothermic peak of crystallization is also observed at the temperature of 1000 °C.

Fig. 6. STA traces of the dried precipitated powder at a rate of 10 °C/min.

Fig. 7. XRD pattern of $YAIO_3$ powder, after calcination at different temperatures for 2 h ($\blacktriangle YAIO_3$, $\blacklozenge Y_3Al_2(AIO_4)_3$).

The dried powders were calcined at 1000, 1200, and 1400 °C for 2 h to evaluate the phase development with temperature. Fig. 7 demonstrates the XRD patterns of mineralizers containing YAIO₃ after firing in various temperatures. As can be observed in Fig. 7, perovskite was the sole crystalline phase after calcination at 1400 °C, whereas the other firing temperature demonstrates an undesirable $Y_3Al_2(AIO_4)_3$ phase. It indicates that the heat treatment of co-precipitated powder at 1400 °C is suitable for the formation of the perovskite structure in the Al_2O_3 - Y_2O_3 system. In other words, compared to solid state synthesis, the temperature required to form a perovskite structure using the co-precipitation method is significantly lower.

3.4. Calcination time

The XRD patterns of mineralizer containing YAlO₃ powder after firing at 1400 °C for 1, 2, and 4 h are depicted in Fig. 8. As it is seen in Fig. 8, after calcination for 2 h, $Y_3Al_5O_{12}$ and $Y_3Al_2(AlO_4)_3$ phases had disappeared from the sample. Increasing the soaking time of heating up to 4 h, did not change the crystallized phase. Therefore, the firing at 1400 °C for 2 h was chosen as the optimal calcination condition for the synthesis of YAlO₃ as a sole phase.

The powder's morphology and EDX analysis are shown in Fig. 9a and b, respectively. It is evident that the synthesized powder has both fine

Fig. 8. XRD patterns of YAIO₃ powder, after calcination at 1400 °C for different time (●YAIO₃, ◆Y₃Al₂(AlO₄)₃, *Y₃Al₅O₁₂).

Fig. 9. a) SEM micrograph and b) the corresponding EDX analysis of YAIO₃ powder after calcination at 1400 °C for 2 h.

and coarse particles, a broad particle size distribution, and a morphology that resembles rods. Rod-shaped morphology resulted from dissolution and precipitation processes during crystallization. The SEM images thus support the mineralizer effect result that has been discussed. The homogeneity of the synthesized powder without any impurities is demonstrated by the elemental analysis by EDX. The fact that the perovskite phase formed as a single phase shows that both the conditions chosen for the synthesis and the co-precipitation method were effective in producing YAIO₃ with a perovskite structure.

4. Conclusions

The results of this research can be summed up as follows:

- YAlO₃ powder based on perovskite structure was successfully synthesized as a single phase via co-precipitation technique at a temperature lower than the solid state method.
- The pH of the solution in the co-precipitation method is an important factor in preventing of stoichiometric losses phase formation.
- Investigation of the effect of different mineralizers, including; NaF; KF; MgF₂; Li₂CO₃; KF:NaF (1:0.666); KF:MgF₂ (1:5); NaF:MgF₂ (1:5) and NaF:MgF₂:Li₂CO₃ (3:2:1) showed that NaF:MgF₂:Li₂CO₃ mineralizer has the most suitable effect in the formation of perovskite.
- Co-precipitation synthesis approach is an appropriate, simple, and relatively low-cost method for the synthesis of YAlO₃ structure. The high homogeneity in this method made it possible to achieve YAlO₃ perovskite as a single phase at 1400 °C for 2 h.

CRediT authorship contribution statement

Sara Ahmadi: Conceptualization, Methodology, Project administration, Formal Analysis, Writing – original draft, Writing – review & editing.

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author.

Declaration of competing interest

The author declares no competing interests.

Funding and acknowledgment

The author would like to express gratitude to the Standard Research Institute for the support in the development of this study.

References

- R. Ianoş, R. Lazau, S. Borcanescu, R. Babut, Single-step combustion synthesis of YAIO3 powders, J. Mater. Sci. 50 (2015) 6382–6387. https://doi.org/10.1007/s10853-015-9190-y.
- [2] E.M. Levin, C.R. Robbins, H.F. Mcmurdie, Phase diagrams for ceramists, The American Ceramic Society. (1964).
- [3] Z. Shen, Å. Ekstrand, M. Nygren, Oxide/Oxide composites in the system Cr2O3-Y2O3-Al2O3, J. Eur. Ceram. Soc. 20 (2000) 625–630. https://doi.org/10.1016/S0955-2219(99)00261-7.
- [4] S.M. Sim, K.A. Keller, T.-I. Mah, Phase formation in yttrium aluminum garnet powders synthesized by chemical methods, J. Mater. Sci. 35 (2000) 713–717. https://doi.org/10.1023/A:1004709401795.
- [5] Y. Wang, L. Zhang, Y. Fan, J. Luo, D.E. McCready, et al., Synthesis, Characterization, and Optical Properties of Pristine and Doped Yttrium Aluminum Garnet Nanopowders, J. Am. Ceram. Soc. 88 (2005) 284–286. https://doi.org/10.1111/j.1551-2916.2005.00071.x.
- [6] Y. Liu, L. Gao, Low-Temperature Synthesis of Nanocrystalline Yttrium Aluminum Garnet Powder Using Triethanolamine, J. Am. Ceram. Soc. 86 (2003) 1651–1653. https://doi.org/10.1111/j.1151-2916.2003.tb03535.x.
- [7] J. Su, Q.L. Zhang, C.J. Gu, D.L. Sun, Z.B. Wang, et al., Preparation and characterization of Y3Al5O12 (YAG) nano powder by coprecipitation method, Mater. Res. Bull. 40 (2005) 1279–1285. https://doi.org/10.1016/j.materresbull.2005.04.009.
- [8] N.J. Hess, G.D. Maupin, L.A. Chick, D.S. Sunberg, D.E. McCreedy, T.R. Armstrong, Synthesis and Crystallization of Yttrium Aluminium garnet & related compounds, J. Mater. Sci. 29 (1994) 1873–1878. https://doi.org/10.1007/BF00351307.

- [9] S. Ramanathan, M.B. Kakade, S.K. Roy, K.K. Kutty, Processing and characterization of combustion synthesized YAG powders, Ceram. Int. 29 (2003) 477–484. https://doi.org/10.1016/S0272-8842(02)00190-6.
- [10] X. Guo, K. Sakurai, Formation of Yttrium Aluminium Perovskite Garnet by Mechanical Solid state reaction, Jpn. J. Appl. Phys. 39 (2000) 1230–1234. https://doi.org/10.1143/JJAP.39.1230.
- [11] M. Shirpour, M.A. Faghihi Sani, A. Mirhabibi, Synthesis and study of a new class of red pigments based on perovskite YAIO3 structure, Ceram. Int. 33 (2007) 1427–1433. https://doi.org/10.1016/j.ceramint.2006.04.023.
- [12] S. Ahmadi, A. Aghaei, B. Eftekhari Yekta, Effective parameters for synthesis of chromium doped YAIO3 red pigment, Pigment. Resin Technol. 44 (2015) 1–6. https://doi.org/10.1108/PRT-02-2014-0013.
- [13] P.A. Tanner, P.-T. Law, K.L. Wong, L. Fu, Preformed sol-gel synthesis and characterization of YAIO3, J. Mater. Sci. 38 (2003) 4857–4861. https://doi.org/10.1023/B:JMSC.0000004405.52574.37.
- [14] U.S. Schubert, N. Hüsing, Synthesis of Inorganic Materials, Wiley– VCH. (2000).
- [15] X. Li, L. Qiang, J. Wang, S. Yang, Effect of process parameters on the synthesis of YAG nano- crystallites in supercritical solvent, J. Alloys Compd. 421 (2006) 298–302. https://doi.org/10.1016/j.jallcom.2005.11.027.
- [16] G. Xia, S. Zhou, J. Zhang, S. Wang, J. Xu, Solution Combustion synthesis, structure and luminescence of Y3Al5O12 :Tb+3 Phosphors, J. Alloys Compd. 421 (2006) 294–297. https://doi.org/10.1016/j.jallcom.2005.11.032.
- [17] S. Ahmadi, A. Aghaei, B. Eftekhari Yekta, Synthesis of Y(Al,Cr)O₃ red pigments by co-precipitation method and their interactions with glazes, Ceram. Int. 35 (2009) 3485–3488. https://doi.org/10.1016/j.ceramint.2009.04.029.
- [18] R.I. Lazău, C. Păcurariu, D. Becherescu, R. Ianoş, Ceramic pigments with chromium content from leather wastes, J. Eur. Ceram. Soc. 27 (2007) 1899–1903. https://doi.org/10.1016/j.jeurceramsoc.2006.04.078.
- [19] C.-C. Hwang, T.-Y. Wu, Synthesis and characterization of nanocrystalline ZnO powders by a novel combustion synthesis method, Mater. Sci. Eng. 111 (2004) 197–206. https://doi.org/10.1016/j.mseb.2004.04.021.
- [20] Z. Yue, W. Guo, J. Zhou, Z. Gui, L. Li, Synthesis of nanocrystalline ferrites by Sol-Gel combustion process: the influence of pH value of solution, J. Magn. Magn. Mater. 270 (2004) 216–223. https://doi.org/10.1016/j.jmmm.2003.08.025.
- [21] A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of 'sol-gel' chemistry as a technique for materials synthesis, Mater. Horiz. 3 (2016) 91–112. https://doi.org/10.1039/C5MH00260E.
- [22] Y. Marinova, J.M. Hohemberger, E. Cordoncillo, P. Escribano, J.B Carda, Study of solid solutions, with perovskite structure, for application in the field of ceramic pigments, J. Eur. Ceram. Soc. 23 (2003) 213–220. https://doi.org/10.1016/S0955-2219(02)00182-6.